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About IMPETUS 
IMPETUS (Intelligent Management of Processes, Ethics and Technology for Urban Safety) is a Horizon 
2020 Research and Innovation project that provides city authorities with new means to improve the 
security of public spaces in smart cities, and so help protect citizens. It delivers an advanced, 
technology-based solution that helps operational personnel, based on data gathered from multiple 
sources, to work closely with each other and with state-of-the art tools to detect threats and make well-
informed decisions about how to deal with them.  

IMPETUS provides a solution that brings together:  

• Technology: leverage the power of Internet of Things, Artificial Intelligence and Big Data to 
provide powerful tools that help operational personnel manage physical and cyber security in 
smart cities.  

• Ethics: Balance potentially conflicting needs to collect, transform and share large amounts of 
data with the imperative of ensuring protection of data privacy and respect for other ethical 
concerns - all in the context of ensuring benefits to society.  

• Processes: Define the steps that operational personnel must take, and the assessments they 
need to make, for effective decision making and coordination - fully aligned with their 
individual context and the powerful support offered by the technology.  

Technological results are complemented by a set of practitioner’s guides providing guidelines, 
documentation and training materials in the areas of operations, ethical/legal issues and cybersecurity.  

IMPETUS places great emphasis on taking full and proper account of ethical and legal issues. This is 
reflected in the way project work is carried out, the nature of the project’s results and the restrictions 
imposed on their use, and the inclusion of external advisors on these issues in project management.  

The cities of Oslo (Norway) and Padova (Italy) have been selected as the site of practical trials of the 
IMPETUS solution during the project lifetime, but the longer-term goal is to achieve adoption much 
more widely.  

The work is carried out by a consortium of 17 partners from 11 different EU Member States and 
Associated Countries. It brings together 5 research institutions, 7 specialist industrial and SME 
companies, 3 NGOs and 2 local government authorities (the trial sites). The consortium is 
complemented by the Community of Safe and Secure Cities (COSSEC) – a group established by the 
project to provide feedback on the IMPETUS solution as it is being developed and tested.  

The project started in September 2020 with a planned duration of 30 months. 
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Executive Summary 
Background and objectives: Big data techniques and solutions are pushing towards a data-driven ecosystem 
where accurate decisions are supported by enhanced analytics and data management. The complexity of the big 
data ecosystem is amplified by the complexity of the corresponding infrastructures/tools, on one side, and by 
the data themselves that are intrinsically heterogeneous, collected at high rates from different sources, and with 
different formats in dynamic and collaborative environments. This scenario introduces the need to rethink and 
redesign conventional data tools and methods used to capture, store, manage and analyze data, while reviving 
the conflict between the need of protecting and sharing data. So far, performance and scalability requirements 
have been mainly addressed, but no proper considerations have been given to the problem of balancing data 
access and data sharing taking into account the peculiarities of big data systems. Similarly, algorithms for 
anomaly detection, e.g., Growing Hierarchical Self-Organizing Map (GH-SOM), require multiple iterations over 
the input dataset, thus making it intractable on larger datasets. Furthermore, the GH-SOM algorithm is designed 
to handle datasets composed of numerical attributes only. This aspect represents an important limitation, as most 
modern real-world datasets are characterized by mixed attributes, numerical and categorical. In addition, most 
anomaly detection algorithms do not guarantee output that is interpretable for the user but merely provide 
feedback in the form of a Boolean response, i.e., normal or anomalous. 
The central objective of Deliverable D4.1 is to provide a big data solution in the smart city domain, supporting 
the definition and execution of big data analytics for anomaly detection and event classification. To this aim, 
this deliverable presents the data engine and the data management approach at the basis of these analytics, posing 
particular attention on data access and protection. It also defines novel analytics algorithms for anomaly 
detection and event classification. 
Approach: The deliverable incrementally presents the proposed solution, which is an extension of the traditional 
Apache-based big data engine. The big data engine is enriched with an ingestion-based access control system 
that enforces non-functional requirements (e.g., privacy) on data collected at the partner cities. The data 
protection approach is driven by an extensive investigation of the key security requirements for big data 
governance. It is based on data annotations and secure data transformations performed at ingestion time, that is, 
it is platform-independent and could potentially be implemented in any big data environments. The big data 
engine is finally complemented with new algorithms for the construction of anomaly detection and event 
classification models, which guarantees large-scale efficient and distributed computation on time series data. 
Results and conclusions: The big data solution introduced in this deliverable is an improvement with respect 
to the current state-of-art in the context of data preparation and analysis, as well as privacy protection. The data 
governance methodology in this deliverable introduces a common and shared access control layer, whereas in 
existing ad hoc solutions each service is monitored for data governance compliance. The proposed approach 
supports a city-level data governance strategy that can be applied to all services independently or to the whole 
smart city ecosystem by simply changing or adding new policies, while in case of an ad hoc solution every single 
service should be updated according to the new data governance strategy. Likewise, the data analytics 
methodology introduces the possibility of handling datasets composed of mixed attributes, making it ideal for 
many real-world issues, including the financial and cyber-security domains. Moreover, the proposed approach 
supports interpretability of the output for the end-user, by introducing a feature ranking, to better understand 
whether the identified anomaly represents a threat or not 
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List of Abbreviations  
Table 1: List of Abbreviations 

Abbreviation Explanation 

ABAC  Attribute Based Access Control 

ANN Artificial Neural Network 

API  Application Programming Interface 

AUC Area Under the Curve 

BMU Best Matching Unit 

DAG Directed Acyclic Graph 

ELT Extract, Load, Transform 

ETL Extract, Transform, Load 

GDPR General Data Protection Regulation 

GH-SOM Growing Hierarchical Self-Organizing Map 

HDFS Hadoop Distributed File System  

HiveQL Hive Query Language  

HQL  Hibernate Query Language 

JDBC Java™ database connectivity 

LSH Locality Sensitive Hashing 

MQE Mean Quantization Error 

NILU Norwegian Institute for Air Research 

NoSQL Not only SQL 

ODBC  Open Database Connectivity 

OLAP Online Analytical Processing 

PKI Public Key Infrastructure 

RDBMS Relational Database Management System 
RDD Resilient Distributed Datasets 

REST  Representational state transfer  

SOM Self-Organizing Map 

SQL Structured Query Language 

UI  User Interface 

URL Uniform Service Locators 

XACML eXtensible Access Control Markup Language 

XML Extensible Markup Language 

YARN Hadoop Yet Another Resource Negotiator 
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List of Definitions  
 
Table 2: List of Definitions 

Term Definition/explanation 

Distributed system A software system distributed over logically separated networking nodes with 
the main goal to distribute data and processing in a reliable way. 

Architecture A set of software components organized in a logical view to emphasize their 
dependencies. 

Pipeline A sequence of tasks to achieve a specific goal. Each task can be parallelized on 
multiple executors improving the performance. Pipelines are suitable jobs for 
processing-oriented distributed systems. 

Software ecosystem A set of tools, normally loosely coupled, designed to work in synergy. They are 
integrated in a software architecture by means of specific configurations. 

Data Lake An ecosystem of data management tools (software components) to handle data 
peculiarities like the absence of a predefined structure. Every tool involved in 
the data lake should have some degree of distribution to fit the need of 
parallelism in computing pipelines. 

Data sanitization  Data sanitization refers to a plethora of solutions and processes aimed to protect 
sensitive data in a document, message, database. It includes anonymization, 
generalization, suppression, masking, to name but a few. 
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1 About this deliverable 

1.1 Why would I want to read this deliverable?  
The main objective of deliverable D4.1 is to describe the approaches and methodologies at the basis of big data 
analytics for anomaly detection and event classification.  
The ability to analyse large volumes of data is important to increase the safety and security of smart cities, 
boosting the adoption of smart processes even in critical domains such as healthcare and transportation. This 
deliverable provides an overview of big data approaches and methodologies at three layers:  

i) infrastructure layer, presenting the data engine that supports big data analytics;  
ii) data management layer, presenting how access to data is monitored and enforced at ingestion time;  
iii) data analytics layer, presenting the algorithms for anomaly detection and event classification.  

D4.1 presents the benefits a solution for big data analysis can bring to a scenario related to public space safety 
and security. The deliverable presents an end-to-end journey through a big data ecosystem focusing on all 
aspects at the basis of a proper big data analysis process in the smart city domain. It poses particular attention to 
the components for data preparation and analysis, as well as privacy protection. 
When considering data management, it is important to recall that the conflict between the need of protecting and 
sharing data is hampering the spread of big data applications. Security and privacy assurance is required to 
protect data owners, while data access and sharing are fundamental to implement smart big data solutions. In 
this context, access control systems can assume a central role in balancing data protection and data sharing. 
However, existing solutions are not general and scalable enough to address the software and technological 
complexity of big data ecosystems, being unable to support such a dynamic and collaborative environment. D4.1 
proposes an organic and coherent solution where traditional data management components are enriched with an 
ingestion-based access control system that enforces access to data in a distributed, multi-party big data 
environment. The approach presented in this deliverable is based on data annotations and secure data 
transformations performed at ingestion time, and implemented in a smart city domain using a traditional Apache-
based big data engine. 
When considering data analysis, it is important to recall that the research and development community is making 
a quantum leap towards increasingly accurate and precise algorithms. To keep pace with the evolving and 
pervasive environment surrounding EU citizens, it is necessary to design and implement new algorithms 
especially in the context of anomaly detection and event classification. Being able to pre-emptively identify 
anomalies and recognize specific events is fundamental to increase the safety of our cities. An increasing request 
for complex event classification and for smart and adaptive anomaly detection is therefore raising. This 
deliverable addresses this need by presenting novel algorithms for anomaly detection and event classification. 
 

1.2 Intended readership/users  
The primary audience of the deliverable is practicians, specialist, researchers, policy officers, safety and security 
operators with interest in big data analysis and big data management.  
 
The audience can then be split into:  

• Internal audience: all the Consortium Partners. In particular, partners in charge of platform and tools 
development can be interested in the architectural approach at the basis of the data management and analytics 
solutions; partners responsible for the specification of the privacy-preserving mechanisms can be interested 
in the data management approach with particular reference to the ingestion-based access control mechanism 
and its data transformations; partners involved in the ethics framework can be interested in the data 
management approach. 
• External audience: anyone interested in the adoption of the project results and, in particular, in the data 
management approach and the data analytics algorithms for anomaly detection and event classification. 
More in details, external audience can include other R&D projects, system developers and engineers, data 
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scientist interested in the technical aspects of data management, access control, and data analytics. In 
addition, EU stakeholders (e.g., EU officers and policy makers) can be interested in the data management 
approach discussed in this deliverable.  Finally, even SMEs involved in the domain of data management, 
data protection and data analytics, can be interested in this deliverable.  

 
The deliverable (or parts of it) may also be of interest to a wider group: anyone with an interest in data 
management and transformation to support collection, analysis and manipulation of data, and in data analysis 
based on anomaly detection and event classification.  
 

1.3 Structure  
The document is organized in three main chapters, as follows. 
Chapter 2 describes the Apache-based big data engine supporting big data analytics, on one side, and access 
control and ingestion functionalities, on the other side. This chapter first describes a conceptual view of the 
engine (Section 2.1). It then discusses an architectural view of the engine (Section 2.2), including data and 
resource management, Access and Audit, and Processing layers. Section 2.3 presents the architectural data flow. 
Chapter 3 focuses on data ingestion and ingestion-time access control. It first discusses the approach to data 
ingestion of structured and unstructured data (Section 3.1). It then presents data annotations for data governance 
(Section 3.2) and data transformations for privacy protection (Section 3.3). It finally presents an attribute-based 
access control methodology that is applied at ingestion time (Section 3.4), with a discussion on how it is mapped 
on the data engine (Section 3.5) and a walkthrough scenario (Section 3.6). 
Chapter 0 presents the data analytics algorithms. It first describes solutions for anomaly detection (Section 4.1). 
It then presents solutions for event classification (Section 4.2). 
Chapter 5 finally draws our conclusions and presents next steps that will be reported in D4.2 “Data analytics 
and ingestion-time access control final report”.  
 

1.4 Other deliverables that may be of interest  
D4.1 is in relation with the following deliverables:  

• D1.2. “Requirements for public safety solutions”, providing requirements for data analytics and 
ingestion-time access control. 
• D3.1 “Secure Smart City Tool Development initial report”, providing a description of the functionalities 
of the algorithms of the Physical Threat Intelligence tool that are used as a starting point for the definition 
of enhanced big data analytics in this deliverable. 
• D4.2 “Data analytics and ingestion-time access control final report” will extend the discussion and 
approach presented in this deliverable. 
• D5.2 “Initial mechanisms to preserve privacy in the secure smart city”, describing privacy-enhancing 
technologies that can be adopted in the data transformation process at the basis of the ingestion-time access 
control solution in this deliverable. 

 
D4.1 is also indirectly related to D7.1 “Validation Plan”, presenting the process for validating the solutions 
provided by IMPETUS platform and D6.1 “Initial Concepts of Operation”, developing strategies and operating 
guidelines, to support organizations in integrating the platform into the management of security events. 
 

1.5 Synergy with other projects/initiatives  
No synergy. 
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2 Data engine 
This chapter presents an overview of the architecture of the big data engine supporting i) data ingestion (Section 
3.1), ii) data sanitization and access management (Section 3.2, 3.3 and 3.4), and iii) data processing (Chapter 4) 
on data coming from the city pilots. In the following, we first present the conceptual view of our engine for non-
expert readers (Section 2.1); we then present the architectural view with technical details on the working of the 
big data engine (Section 2.2); we finally present the architectural data flow (Section 2.3). 

2.1 Conceptual view 
Figure 1 shows a conceptual and abstract view of our big data engine architecture. It implements a data 
management process, that is, the process of collecting, storing, using, and maintaining data in a secure, efficient, 
and cost-effective way. The process includes all practices devoted to the protection of data security and privacy, 
as well as all activities needed to prepare data for a proper analytics process. It is composed of 5 main building 
blocks as follows. 

Figure 1: Conceptual view of the big data engine. 

 

• Data sources: Physical data collection points, where relevant data are collected.  
• Data ingestion: The procedure that stores data within the data storage. Depending on data sources and 

the format of the collected data, data ingestion procedure may require a data format transformation that 
fits the data storage target of the ingestion process. Given the nature of the data to be ingested, it is 
normally implemented as a pipeline where i) the initial task collects data from the data sources, ii) the 
following tasks transform data, if needed, iii) the last task saves data to the landing data storage. 

• Data storage: The component responsible for storing data. It is part of the data lake and preserves 
confidentiality, integrity, and availability of data at rest. It provides data for analytics.  

• Data governance controls: The set of controls (e.g., processes, policies, standards, metrics) supporting 
an efficient and effective access to and usage of data. It is part of the data lake and preserves 
confidentiality, integrity, and availability of data at rest. It provides access to data for analytics.  

• Analytics: A pipeline that implements a specific analysis on the data in the data storage having the scope 
to extract value. Analytics can include statistical analysis, data mining analysis or machine learning 
analysis, to name but a few. 
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We note that the core of the view in Figure 1, that is, data ingestion, data storage, data governance controls, 
implements the data lake, an ecosystem of data management tools and components that supports the management 
of the entire data life cycle from collection to analysis. We also note that, given the nature of the data to be 
ingested (possibly confidential data) and the heterogeneity of data sources, data ingestion is augmented with 
data governance controls on actors (services or users triggering data ingestion for analytics) and data. The latter 
can require additional control-oriented transformation tasks, which are implemented using the advanced 
ingestion-time access control presented in Chapter 3. 
The data management process described in Figure 1 is composed of the following steps: i) data are collected 
from a variety of data sources, each of which with a possible different format; ii) data are forwarded to the 
ingestion pipeline that specifies the activities needed to transform and reconcile the different data formats; iii) 
data ingestion is subject to data governance, where ad hoc controls are implemented to monitor actors’ activities 
and data exchanges and operations; iv) ingested data are stored in a data store for further analytics activities; v) 
analytics are performed on stored data and produce results that can be stored in the data storage as well. The 
process is implemented in a parallel and distributed system built on top of the big data engine described in the 
following of this section. Technical details on the entire data governance process and the analytics are available 
in Chapter 3 and Chapter 0, respectively. 
 

2.2 Architectural view 
Figure 2 shows the architecture of our Apache-based big data engine.1 It is composed of three main types of 
components as follows. Data and Resource Management components focused on data collection and 
transformation prior to their storage for analytics. They are at the basis of data ingestion. Access Control and 
Audit components focused on data sanitization and access management. Processing components focused on the 
analytics of data collected at ingestion time. All components are presented in detail in Sections 2.2.1, 2.2.2, 
2.2.3. 

 
Figure 2: Big data engine architecture. 

2.2.1 Data and resource management 
Data and resource management are fundamental functionalities for any kind of distributed systems, including 
big data engines. In the following, we describe the components managing data storage (Hadoop Distributed File 
System - HDFS and Hive), ingestion, buffer storage and messaging (Kafka) and computational resources 
(Hadoop Yet Another Resource Negotiator - YARN).  

 
1 The big data Apache ecosystem offers some of the most prominent and used solutions in big data industry. Success is due 
both to the open source nature of all the tools, which can run on commodity hardware in existing data centers or on cloud 
infrastructures, and to their efficiency. 
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2.2.1.1 HDFS and YARN 
The Hadoop framework is designed to store and process large amount of data on clusters made of commodity 
hardware. It constitutes the lowest layer of our architecture, and provides storage (i.e., HDFS) and resource 
management (i.e., YARN) capabilities. It also provides the Map-Reduce processing model suitable for 
processing analytics that does not suffer from data intensive activities.  It is based on work done by Google in 
the early 2000s [1][2]; the core idea is to distribute the data as they are initially stored, lowering the need to 
move data between nodes for the initial processing. Each node can then perform computations on the data it 
stores, thus reducing the need of communications (i.e., “shared nothing” paradigm where data are spread among 
nodes in advance). When data are loaded in the system, they are divided into blocks (64MB or 128MB) to ease 
the distribution of data and the computation of differences. Processing tasks are divided in two phases i) map 
tasks that insist on small portions of data and are executed where data are stored, ii) reduce tasks that combine 
data from different nodes to produce the final results. A master node allocates tasks to each processing node. 
Master node is also responsible for failure detection and reassigns tasks to a different node. It can also 
redundantly execute the same task to avoid restart or re-allocation.  
Hadoop consists of: i) Hadoop Common that contains libraries and modules, ii) HDFS that contains all the 
components of the Hadoop distributed file system, iii) YARN that includes the components for resource 
allocation and negotiation, and iv) Hadoop MapReduce that provides a programming model for large scale data 
processing and components supporting it.    

 
HDFS 
HDFS is a distributed file system, written in Java, based on blocks to be distributed across nodes. Each block is 
replicated multiple times in different nodes to guarantee resilience. HDFS adopts an approach where files are 
written once and read many times; it is optimized for streaming reads.  
More in detail, files, when loaded into HDFS, are split into blocks that are then distributed across nodes at load 
time. Different blocks from the same file are stored on different nodes and replicated for a given number of 
times. The master node called “NameNode” keeps track of the blocks–file relation (see Figure 3). 

 
Figure 3: File distribution. 

NameNode is also used to retrieve data, determining which blocks make up a file and on which data nodes 
those blocks are stored. Figure 4 shows a more detailed view on HDFS architecture. 

• Client: It writes or reads files on HDFS. 
• NameNode: It holds the metadata for HDFS. Stores the HDFS data blocks in FsImage file. Any updates 

to the file system (add/remove blocks) are marked on EditLog, without the need to change FsImage file. 
The modifications are triggered at checkpoint time by the Secondary NameNode. 

• Secondary NameNode: It performs housekeeping functions for the NameNode. Periodically reads the 
EditLog and applies the changes to the FsImage file bringing it up to date. It supports fast restart of 
NameNode if needed. 

• DataNode: It stores the HDFS data blocks. 
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Figure 4: HDFS Architecture. 

 
Hadoop MapReduce 
Hadoop MapReduce component provides processing capabilities to Hadoop framework executing MapReduce 
tasks on the cluster of HDFS nodes. Figure 5 shows the architecture of MapReduce applied to Hadoop HDFS 
cluster. 

• JobTracker: The master responsible to manage MapReduce jobs. It determines the execution plan for 
the job and assigns individual tasks.   

• TaskTracker: The slave that performs the job. Monitors individual Map and Reduce tasks and keeps 
track of the performance of an individual mapper or reducer. 

• Map tasks: Tasks that execute split and map. 
• Reduce tasks: Tasks that execute shuffle and reduce. 

 
Figure 5: MapReduce architecture applied to HDFS cluster. 

 
For every job submitted for execution in the system, there is one Job Tracker that resides on Namenode and 
there are multiple Task Trackers which reside on Datanode. 
Task tracker is responsible to send the progress report to the Job Tracker and periodically 
send 'heartbeat' signals. In the event of a task failure, the job tracker can reschedule it on a different Task Tracker.  
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Hadoop YARN 
Hadoop YARN is the resource manager of the Hadoop cluster. It was introduced in Hadoop v2 as a generic 
platform to run any distributed applications (including MapReduce ones). YARN splits the functionalities of 
resource management and job scheduling/monitoring into separate components: i) Resource Manager focused 
on global resources management and ii) Application Master focused on single application (single job or 
workflow of jobs).  
Figure 6 shows the YARN architecture. Resource manager is made of two subcomponents: Scheduler and 
Application Manager. The Scheduler allocates resources for applications. The Applications Manager manages 
job submission negotiations for the first container where the Application Master is executed.  
The Application Master negotiates resources with the Scheduler for the application. It also tracks the status and 
monitor progresses. 
Another component is the Node Manager, which launches and manages containers on a node. Containers execute 
tasks as specified by the Application Master. 

 

 
Figure 6: YARN architecture. 

 
The steps to submit an application to a YARN cluster are discussed in the following. 

1. A client submits an application to the YARN Resource Manager. 
2. The Application Manager negotiates a container and bootstraps the Application Master instance for 

the application. 
3. The Application Master registers with the Resource Manager and requests containers via Scheduler 

(RAMs and CPUs). 
4. The Application Master communicates with Node Managers to launch the containers it has been 

granted with. 
5. The Application Master manages application execution.  
6. The Application Master reports completion of the application to the Resource Manager. 
7. The Application Master unregisters with the Resource Manager, which then cleans up the Application 

Master container. 
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2.2.1.2 Kafka 
Kafka is the component responsible for stream ingestion. It is also integrated with Apache Atlas (see Section 
2.2.2.2) to support its communications with components that perform data lineage and tag-related notification. 
Kafka is a distributed streaming platform that implements a producer/consumer paradigm with i) high scalability 
via partitions, ii) fault tolerance via replication and iii) a high level of parallelism and decoupling between data 
producers and data consumers. 
Kafka uses a topic as a user-defined category with which messages are published. Producers publish messages 
to one or more topics, while consumers subscribe to topics and process the published messages. Kafka cluster 
consists of one or more brokers (servers) that manage the persistence (with specific retention periods, if needed) 
and replication of messages. Each broker has a unique ID and can be responsible for partitions of one or more 
topic logs.  
Kafka brokers leverage on ZooKeeper to i) manage and coordinate the cluster, ii) elect a broker to deal with 
client requests for an individual partition of a topic.  
Topics may have multiple writers and readers. Producers can also add a key to a message to let them be placed 
to the same partition. Without keys, messages are written to partitions in a round robin fashion. 
Figure 7 shows the simplified architecture with Kafka cluster and ZooKeeper as an external service.  

 
Figure 7: Architecture with Kafka cluster and ZooKeeper. 

 
At a more abstract level, Kafka topics can be seen as channels through which data are streamed. Topics organize 
and structure messages and are identified by unique names within a Kafka cluster. In Kafka clusters, topics are 
divided into partitions, and partitions are replicated across brokers.  
 
2.2.1.3 Hive 
Hive is a structured data warehouse based on Hadoop, capable to manage large data sets that reside in a 
distributed storage. It uses a SQL-like language called HiveQL and leverages on storage and resource 
management of Hadoop. A Hive query is first converted into Map Reduce and then processed by Hadoop or 
Spark. Hive was developed by Facebook to reduce the work of MapReduce programs writing data. Figure 8 
shows the Hive architecture. Hive supports thrift client, JDBC client and ODBC client. Hive services are: 
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Figure 8: Hive architecture. 

• HiveServer2: The second version of HiveServer service that supports more clients. It enables clients to 
execute queries on hive.  

• Driver: It receives the HiveQL statements to execute them by creating sessions and monitoring the 
progress. It stores the metadata of HiveQL execution on the Metastore. The driver is also the collection 
point for data or query results retrieved after the reduce operation of the underline MapReduce engine.  

• Metastore: It stores the metadata information about i) the structure of tables (e.g., column name and 
type), ii) partition metadata for the driver to track distributed data sets over the cluster. 

• Compiler: It performs compilation of the HiveQL query, to an execution plan in terms of tasks and 
steps to be executed by Hadoop MapReduce. The compiler converts the query to an abstract syntax tree 
to check for compile-time errors and then to a Directed Acyclic Graph (DAG) that can be mapped on 
MapReduce stages and tasks. 

• Optimizer: It works on the DAG to optimize performance and scalability. 
• Beeline: A CLI used to submit queries and commands. 

After compilation and optimization, the Hive executor executes the tasks interacting with the JobTracker of 
Hadoop. It checks for the pipelining of the tasks that handles dependency and tasks ordering. Currently Hive 
also permits to interact with Apache Tez, an executor engine that is an additional layer on top of YARN. 

2.2.2 Access control and audit 
Access Control and Audit are key functionalities for a big data engine. In the following, we describe components 
that handle authorization/access to data and access audit (Ranger) and support data annotation for data 
governance and audit (Atlas). 
2.2.2.1 Apache Ranger 
Apache Ranger offers centralized authorization and auditing across Hadoop components via specific plugins. It 
permits to design attribute-based access policies using resources classification or tags, and to specify data 
transformations. It is part of the access management and audit layer. It also offers audit capabilities of policies 
outcomes. Figure 9 shows the Apache Ranger Architecture. It also describes external but crucial components 
that interacts with Ranger, like Solr as audit searching engine, HDFS for hosting audit logs, Atlas for tags, 
LDAP/AD/OS for authentication. We note that HDFS and Solr are also mentioned in the architecture since they 
are involved in Ranger activities via specific plugins. 
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Figure 9: Apache Ranger Architecture and external components. 

 
Ranger is composed of a set of services including i) Admin Portal, ii) Policy Server, iii) User/Group Sync 
Service, iv) Audit Service and v) Tag Sync Service.  

• The Admin Portal is the central interface for the administration of Ranger. It provides UI for policy, 
audit, and the API module for interoperability. 

• The Policy Server allows admin users to define/update policy details. It supports both allow and deny 
policies that can be associated with different security zones with distinct sets of resources. Security 
zones separate resource policies into different zones, to simplify administration of security policies and 
limit the policy checks during authorization against certain resources. Zones enable multiple zone 
administrators to setup different policies. One resource can only be assigned to one zone. 

• User/Group Sync is a synchronization utility used to pull users and groups from different sources to be 
stored in Ranger policy DB for policy definition. 

• The Audit Service permits to audit policy results. It is configured to enable audit on specific policies. 
Audit logs are stored to HDFS by default. 

• The Tag Sync Service is used to separate resource-classification from access-authorization. It uses 
Atlas to manage metadata. It is driven by events handled by Atlas. Tag-based policies are evaluated 
before the resource-based ones. 

Ranger interacts with other Hadoop components via plugins. The Ranger plugin loads policies from Admin 
Server regularly and cache them locally. It acts as the authorization module for the component that evaluates 
user requests against security policies. It is also involved in audit event triggering. 
The plugin-based approach makes the architecture extensible. It supports authorization and auditing for new 
components. 
 



D4.1 Data analytics and ingestion-time access control initial report V1.00   2021-11-10 
 

 

The research leading to these results has received funding from Horizon 2020, the European Union's                              Page 21 of 80 
Framework Programme for Research and Innovation (H2020) under grant agreement n° 883286. 
 
 

2.2.2.2 Apache Atlas 
Apache Atlas provides a metadata repository with a flexible type system to capture schema and metadata of 
multiple components (e.g., Hive and HDFS). It supports the data annotation process, tag policy specification in 
Ranger, and data lineage and provenance. It also provides metadata search functionalities based on attributes. In 
terms of capabilities, it provides: i) data classification, ii) centralized auditing, iii) search and lineage, iv) security 
and policy engine. To support data classification, it provides taxonomy and data annotations; it also automates 
the capture of relationships between data sets, sources, targets, and derivation processes. Atlas offers centralized 
auditing to capture security access information for every process and data interaction. In terms of search and 
lineage capabilities, Atlas permits to explore the data classification and audit information, search for features, 
locate relevant data and audit events, visualize data set lineage and operational security, and provenance-related 
information.  
Atlas implements the layered architecture described in Figure 10. 
 

 
Figure 10: Architecture of Apache Atlas. 

 
The core layer includes: i) the type system, ii) the ingest/export component and iii) the graph engine. The type 
system permits to define models for the metadata objects in terms of definitions (called types) and instances of 
types (called entities). It permits to maps relations between entities. The Graph engine is the engine used to 
manage metadata that can be added and exported via ingest/export services. Atlas interacts with the rest of the 
ecosystem in two ways through the integration layer: i) REST API as the primary mechanism to create delete 
and update entities, and to query and discover types and entities, ii) Kafka messaging to communicate metadata 
and events with other data-oriented Atlas supported services like Hive, HDFS, and Spark in our architecture. 
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The Application layer of Atlas includes: i) A web admin UI interface, ii) Ranger tag-based policies, which 
consume metadata as tags to verify its authorization policies. 

2.2.3 Processing 
Parallel distributed processing of data is one of the distinguishing factors underpinning the big data engine 
adoption. We describe the components that support in memory processing of batch data (Spark), processing of 
streams/micro-batch (Spark stream), and orchestration/scheduling of processing pipelines (Airflow). 
2.2.3.1 Apache Spark 
Apache Spark is an advanced, unified analytics engine for large-scale data processing. It is capable to leverage 
on Hadoop, though compared to the Hadoop MapReduce it i) is focused on in-memory processing of cached 
data, ii) offers a more expressive computing model not limited to Map and Reduce instructions, and iii) achieves 
fault tolerance via re-execution and lineage instead of replication. It also provides the support of tools like Spark 
SQL and Mlib. 
In addition, it supports more programming languages than Hadoop MapReduce. 
The core idea of Spark is to provide a more expressive computing system (not limited to map reduce model). It 
exploits system memory to avoid saving intermediate results to disk and cache data for repetitive queries. It also 
achieves fault-tolerance by re-execution instead of replication. Figure 11 shows the Spark architecture, whose 
components work as follows. 

 
Figure 11: Apache Spark architecture. 

 
• Spark Core: It provides an execution platform for all the Spark applications. It is responsible for fault 

recovery, scheduling, distribution and monitoring jobs, memory management and interaction with 
storage systems. 

• Spark SQL: It enables users to run SQL/HQL queries. Spark SQL permits to process structured and 
semi-structured data.  

• Spark Streaming: It enables a powerful interactive and data analytics application. The live streams are 
converted into micro-batches that are executed on top of Spark core.  

• Spark Mllib: It is the library containing efficient and high-quality Machine learning algorithms written 
in Spark.  

• Spark GraphX: It is the graph computation engine built on top of Apache Spark that enables to process 
graph data at scale. 

In the Spark Architecture, YARN and Mesos are mentioned as alternative means to allocate resources for the 
Spark computations. If undefined, Spark can use its own Spark cluster manager. 
A Spark program (i.e., driver program) first creates a SparkContext object that i) tells Spark how and where to 
access a cluster, ii) connect to several types of cluster managers (e.g., YARN). Cluster manager allocates 
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resources across applications (workers node). Each worker node contains a Spark executor that is responsible to 
run computations and access the data storage. 
To provide in-memory processing, Spark uses a peculiar data abstraction called Resilient Distributed Datasets 
(RDDs). RDD is a Fault-Tolerant Abstraction for In-Memory Cluster Computing. It is a collection of partitioned 
elements (e.g., tuples) that represent records of the data. It is i) resilient in terms of fault-tolerance, since it is 
able to recompute missing or damaged data partition due to node failures, ii) distributed since data reside on 
multiple nodes in a cluster. 
RDD is stored in RAM memory. They are immutable, no changes once created, they can only be transformed 
by means of transformations to new RDDs (functional programming paradigm). RDD are subjects to lazy 
evaluation. The data inside RDD are not available or transformed until an action triggers the execution. RDDs 
are typed values and can be stored and retrieved directly from the memory without the need to access the disk. 
The operation applied to RDD refers to the entire data set and not to just one element. In Spark, operations are 
of two types, as follows. 

• Transformation: Functions that return a new RDD. No evaluation is done when a transformation is 
called. The transformation function just takes an RDD and returns one or more RDDs. Examples of 
functions are map, filter, flatMap, groupByKey, reduceByKey, aggregateByKey. 

• Action: It evaluates and returns a new value. When an Action function is called on a RDD object, all 
the data processing queries are computed at that time and the result value is returned. Examples of 
actions are reduce, collect, count, first, take, countByKey, foreach. 

Figure 12 shows Spark RDD and operations. 

 
Figure 12: The operations in Spark RDD. 

 
Spark transformations use lazy evaluation. No computation is performed but Spark remembers the set of 
transformations to be applied so that it can optimize the calculations and recover from failures. Spark implements 
two types of transformations: narrow transformation, where an output RDD has partitions with records that 
originate from a single partition in the parent RDD (e.g., Map, FlatMap, MapPartition, Filter), and wide 
transformation (i.e., shuffle), where output data of a single partition may originate from multiple partitions of 
the parent RDD (e.g., groupByKey, reduceByKey, Join, Intersect). 
Spark actions are RDD operations that produce non-RDD values returning the final result of RDD computations. 
It triggers execution using lineage graph to load the data into original RDD, carries out all intermediate 
transformations and returns results to the driver program or writes it out to the file system. Examples of actions 
are: first, take, reduce, collect, count. 
RDD and operations constitute the Spark DAG (Directed Acyclic Graph), where vertices represent 
the RDDs and edges represent the operations to be applied on RDD. On the calling of an action, the DAG is 
submitted to the DAG scheduler, which further splits the graph into the stages of the task. Stages are sequences 
of RDDs, which do not have a shuffle in between. For each stage, Spark creates a task for each partition in the 
new RDD, serializes the tasks, schedules and ships tasks to workers. DAG is therefore used to optimize the 
execution plan (e.g., minimize shuffling data around). 
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In addition to RDD, thanks to SparkSQL, DataFrame and Dataset can be used as structured data in Spark 
programs. DataFrame/Dataset provide a single interface for efficiently working with structured data including 
Apache Hive, Parquet, and JSON files.  
SparkSQL integrates relational processing with Spark functional programming to offer connection between 
RDD and relational tables. 
DataFrame is a distributed data set built on top of RDDs and organized in named columns. It is similar to a 
relational database, but it is immutable once constructed, permits to track lineage, enables distributed 
computations. It can be generated reading from a file, parallelizing a collection list, transforming an existing 
DataFrame and in general applying transformations or actions. 
To access the DataFrames either SQL Context or Hive Context is needed: 

• SQLContext: It is the entry point for working with structured data (rows and columns) in Apache 
Spark. It permits the creation of DataFrame objects as well as the execution of SQL queries. 

• Hive Context: It works with Hive tables, a descendant of SQLContext. Hive Context provides a richer 
functionality than SQLContext. 

DataFrames are more advanced than RDDs. They have i) Custom Memory Management with no garbage 
collection overhead (the data are stored in a binary format and the schema of the memory is known), ii) 
Optimized Execution plan for the execution of a query (final execution takes place on RDDs). 
DataSet is an extension of DataFrame; it provides strongly-typed, immutable collection of objects that map to 
the relational schema. It is possible to convert the Type-safe data set to an “untyped” DataFrame.  
 
2.2.3.2 Apache Spark streaming 
Spark streaming enables large-scale stream processing fully integrated with Spark batch and interactive 
processing. It provides a simple batch-like API that implements a type of stream processing based on micro-
batch. It can interact with Kafka, Flume, and the like, to obtain data streams. Figure 13 shows how Spark 
Streaming works. 

 
Figure 13: Apache Spark streaming workflow. 

 
Spark Streaming receives live input data streams and divides the data into batches. The Spark engine processes 
each batch as RDDs to generate the final stream of results (again small batches). Batches of input data are 
replicated in memory of multiple worker nodes to obtain fault-tolerant processing. 
More specifically, the main data abstraction of Spark Streaming is DStream, which is a sequence of RDDs 
representing a stream of data. Transformations modify DStream to another DStream using standard RDD 
operations or stateful operations. The processing of each batch has no dependency on the data of previous 
batches.  
Stateless transformations can combine data from many DStreams within each time step. Stateful transformations 
use data or intermediate results from previous batches and compute the result of the current batch. Stateful 
transformations are operations on DStreams that track data across time. For instance, windowed operations that 
act over a sliding window of time periods. 
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2.2.3.3 Apache Airflow 
Apache Airflow is an orchestrator of processing pipelines aimed to provide scheduling and monitoring 
capabilities. Airflow pipelines, differently from other orchestrators, are not designed with a metalanguage (e.g., 
XML), but directly implemented in Python. This permits better dynamic pipeline generation. The pipeline is 
modelled as a DAG of tasks. Tasks can be Spark jobs; Airflow can easily manage failures or complex and 
dynamic workflows of Spark jobs. 
Figure 14 shows the Airflow architecture.  

 

 
Figure 14: Airflow architecture. 

More in detail, Airflow Architecture is based on the following components: 

• Scheduler. The most important component of Airflow. It orchestrates DAGs and the corresponding tasks 
based on interdependencies and fair scheduling between DAGs. To execute a DAG it submits tasks to 
the executor. 

• Executor. It handles running tasks. By default, Airflow runs everything inside the scheduler, but it also 
manages workers or external executors such as Celery and Kubernetes. 

• Webserver: It constitutes the UI of Airflow. It provides interfaces to inspect, trigger and debug DAGs 
and tasks. 

• DAG Directory: It contains DAGs definition. It is primarily accessed by the scheduler and executor. 
• Metadata database: It stores metadata about DAGs like runs and other Airflow configurations. It is used 

primarily by the scheduler and executor to store DAG-related information. 
In Airflow, a workflow (i.e., a DAG in execution) can be triggered manually, by external triggers, or by a 
scheduler. It can also be modified, even if scheduled, and either the modified version takes place at the next 
scheduling event or (using the backfilling mechanism) the modified version (or part of it) is executed back in 
time on previous data if available.  

2.3 Architectural data flow 
The big data engine in this deliverable implements a data flow composed of two sequential procedures: i) 
ingestion procedure, involving data sources and ingestion pipelines, ii) analytics procedure, involving analytics 
and visualization pipelines. Figure 15 shows the two procedures in terms of data processing pipelines, that is, a 
sequence of processing tasks that can be parallelized to exploit the big data engine capabilities. 
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Figure 15: Architectural data flow. 

Depending on the goal, pipelines can be roughly classified as i) ingestion pipelines, they capture and transform 
data with the purpose of saving them for further analysis. Ingestion pipelines deal with different data formats 
(i.e., structured, unstructured, and semi-structured); ii) analytics pipelines, they execute specific analysis on data, 
which may include data preparation tasks (e.g., normalization, cleaning, selections) to make data suitable for 
specific analytics, iii) visualization pipelines, they present the output of an analytics to users. Pipelines are 
implemented using processing components and executed with the support of the resource management 
components. 
Considering the ingestion procedure:  

• Data Sources are the source of row data. They are connected to the ingestion pipeline via specific 
connectors (e.g., Kafka queue, API, specific ingestion tools). 

• Ingestion pipeline is a pipeline responsible to transform data flows prior to storing them. Data can be 
either ingested in batches, in real-time (stream), or using a hybrid combination of the two patterns. In 
the first case, the ingestion pipeline periodically collects (via a pull or push approach) groups of data. 
In the second case, data are continuously sent and treated by the ingestion pipeline as soon as they are 
collected. The hybrid way, called micro-batch, groups data in very small batches to enhance the data 
ingestion and corresponding analytics. 

• Data storage is a distributed medium where data are permanently stored. Data storage behaves 
differently depending on the data format, that is, structured or unstructured data. The two data formats 
correspond to different storage solutions, different query languages, and different types of operations 
that can be performed on data. Structured data have an expected format and schema, and are generally 
stored in RDBMS where they are analyzed, managed, and queried. Unstructured data can come in many 
formats (e.g., email, social media posts, images/video) and are commonly stored in schemaless NoSQL 
datastores. In our architecture, data storage is implemented by Hive and HDFS. 

Considering the analytics procedure:  

• Analytics pipeline is responsible to retrieve some values from the data after ingestion (e.g., build a ML 
model, or apply a model for prediction). A very simple analytics pipeline can be expressed as queries to 
get insights and provide simple analysis (e.g., aggregations).  

• Visualization pipeline is a pipeline designed to prepare data to be graphically visualised. The considered 
data are the outcome of an analytics or any aggregations on the data in the storage. To this aim, it usually 
includes some processing tasks suitable to lower the dimension of the plot or aggregate data in a specific 
manner. 

Figure 15 also depicts a streaming pipeline integrating ingestion and analytics procedures into a single pipeline 
for prediction (dashed arrows) and a typical batch processing or model creation analytics (solid arrows). 
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We note that the ingestion pipeline is the middleware between data sources and analytics pipeline, and is then 
the most suitable point to implement our access control approach.  
 

2.3.1 Data flow  
The architecture in Figure 15 describes the different phases of the data management process in Section 2.1 and 
the corresponding data flow. Each phase is driven by a big data pipeline where structure and frequency of the 
data flow have primary importance.  
Concerning the structure of the data flow, the type of data (structured, unstructured and semi-structured) affects 
the ingestion procedure and how data need to be structurally transformed (if needed). 
Concerning frequency of the data flow, batch, stream (i.e., real-time flow), micro-batch are considered with the 
primary scope of defining how to analyse them. More specifically: 

Batch – Data are collected in large windows of time (usually ranging from 1 hour up to few days). The 
time to process them is not a critical factor. Processing data in batches introduces latencies between 
storage and data availability in analytics or visualization pipelines. If latencies are a negligible factor, 
dealing with data in batches is not an issue. Batch ingestion is normally obtained via API, file ingestion 
or specific ingestion tools. Batch analytics are the most traditional way to process data that derive from 
traditional data mining approaches, where batches of data are used to train and test a model.  
Mapping on engine: Ingestion via Hive or HDFS and analytics with Spark. 
Stream – Data come to ingestion or to analytics/visualization pipelines as soon as they are produced; 
in general, data in stream format are produced and dispatched one at a time (i.e., as a unit). In such a 
format, the latency to perform analytics and output results is a critical factor. Data streaming and real-
time processing are strongly connected concepts. The videos coming from a surveillance camera or 
(system) log entries are just a common example of data stream. Streams are normally treated by end-to-
end pipelines (dashed arrows in Figure 15). Stream ingestion is normally obtained via queue systems 
and it is in line with the analytics to keep the real time constraint. 
Mapping on engine: Ingestion via Kafka and analytics with Spark-stream. 
Micro-batch – it is a hybrid format between stream (under the aspect of velocity in data collection) and 
batch (aggregated data are sent in small files). Micro-batches are used when real-time processing is not 
a critical issue but, of course, it is not expected to wait hours for their processing. This kind of data can 
be obtained by dividing a batch in many smaller units. Micro-batch ingestion is obtained similarly to 
the stream one with buffered queue or scheduled API calls, but with the scope of storing the data prior 
to analytics procedure. Micro-batch analytics work similarly to the stream one, but more focused on 
incremental modelling and continuous predictions   
Mapping on engine: Ingestion via Kafka, HDFS and analytics with Spark-stream. 

 

2.3.2 Architectural view on data ingestion procedure 
Data ingestion procedures are composed of three steps: i) extract, the process of pulling the source data from 
the original data source (played by the data source connectors), ii) transform, the process of changing the 
structure of data to integrate with the target data system (ingestion pipeline in Figure 15), and iii) load, the 
process of depositing the data at rest into a data storage (storage in Figure 15). 
The ordering of these steps defines the two main approaches: ETL (Extract, Transform, Load) and ELT (Extract, 
Load, Transform). ETL is typical for data warehouses and Online Analytical Processing (OLAP). In this case, 
data are sent in a temporary staging area prior to being transformed to a structured form. ELT is emerging as the 
prevalent scheme for big data analytics: data are stored immediately into a data lake storage system (dotted 
arrow in Figure 15), without any structural transformations. 
In terms of data governance, ETL supports a priori compliance to regulations; non-compliant data are in fact 
never stored in the data warehouse. ETL ingestion pipelines may require modification in case the data structure 
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does not support a new type of analysis. On the contrary, ELT is focused on ingesting row data as they become 
available; data are transformed only when needed.   
Our solution (presented in Chapter 3) is based on an advanced ETL schema where i) data transformation is the 
result of a policy enforcement, and ii) the target of phase load of the data ingestion procedure is the data lake 
infrastructure. The scope of this advanced ETL method is to enforce access control at ingestion time before an 
access request is received. 

2.3.3 Architectural view on data analytics procedure 
Data Analytics procedure analyses i) data after ingestion with the goal of building models or generating analysis 
or predictions (analytics pipeline), ii) data to produce suitable views for visualization and reporting (visualization 
pipeline). 
Two aspects of analytics pipeline must be considered: batch analytics for model creation and stream analytics 
for prediction. 
In the past, large amounts of data were mainly collected in batch formats and the technologies were not suitable 
for real-time data ingestion/processing. To manage batches, existing systems mainly relied on the ETL 
architecture. Subsequently, systems have been designed with architectures called Kappa (see Figure 16) that has 
been developed purely to handle data in stream mode. But this was also its limitation, since no batches of data 
could be collected using Kappa architectures. The introduction of Lambda architectures (see Figure 17) has 
overcome the limitations of Kappa architectures. 

 
Figure 16: Kappa architecture. 

 
The definition of the Kappa Architecture is attributed to Jay Kreps.2 The underlying idea is to handle both real-
time data processing and continuous reprocessing in a single stream processing engine. Kappa Architecture is a 
software architecture pattern and can be assumed as a simplification of the more complex Lambda Architecture. 
In the Kappa architecture, data are ingested as streams only and processed in a so-called “real-time layer”, 
whereas the “serving layer” provides optimized responses (real-time views) to queries.  
 

 
2 http://milinda.pathirage.org/kappa-architecture.com/ 



D4.1 Data analytics and ingestion-time access control initial report V1.00   2021-11-10 
 

 

The research leading to these results has received funding from Horizon 2020, the European Union's                              Page 29 of 80 
Framework Programme for Research and Innovation (H2020) under grant agreement n° 883286. 
 
 

 
Figure 17: Lambda architecture. 

Attributed to an idea of Nathan Marz, the Lambda architecture (the approach used in our solution) is the most 
applied architecture dealing with stream ingestion and processing. Lambda architecture is composed of three 
layers: batch layer, speed layer and serving layer. Batch layer deals with very large amount of data (main feature 
of data batch ingestion modality). The batch layer stores the incoming data and, by means of batch processes 
(performed at some interval of long duration), computes the batch views. On the other hand, the speed layer 
processes data streams in real time to provide real-time views on the most recent data. The serving layer makes 
the views produced by the previous two layers available to answer queries from the analytics processes. Despite 
Figure 17 shows that serving layer just handles those views outputted by the batch layer, in practice its utilities 
also cover real-time views. 
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3 Data ingestion and access control 
This chapter extends the data architecture in Figure 15 to achieve full data governance on the ingested data (see 
Section 3.4.2). More specifically, we propose an access control-based data governance approach that works at 
ingestion time and supports sanitization and transformation of data prior to the storage in the data lake.3 This 
approach, based on data sanitization and transformation, would enable the support for GDPR compliance 
requirements at ingestion time. It is based on an advanced ETL schema (see Section 2.3.2 for details) focused 
on balancing the flexibility of ELT with the control capability of traditional ETL where i) data transformation 
is the result of an access control policy enforcement and ii) the loading target is the data lake infrastructure.  
Our advanced ETL schema enforces access control policies at ingestion time before any access request is 
received. Access control policies are designed and enforced to guarantee that the data stored in the data lake are 
compliant with the policies defined for specific services/actors (possibly mandated by laws and regulations) and 
directly accessible with no delay when requested. To this aim, data are first annotated with labels modelling 
their peculiarities in terms of risk, sensitivity, or privacy; policies are then enforced on data according to these 
annotations; sanitized data are finally stored in the data lake and then used for the analytics in Chapter 0. 

3.1 Data ingestion procedure 
This section presents the details of our data ingestion procedure depicted in Figure 15. In particular, we detail i) 
data sources and connectors, describing methodologies for collecting data from different sources, ii) ingestion 
pipeline, detailing the ingestion pipeline tasks, and iii) ingestion storage, describing different storing solution 
for ingestion procedure.  

3.1.1 Data sources and connectors 
The process of data extraction is called data sourcing or data extraction (E in ETL or ELT). It is the process of 
extracting data from several external or internal data sources composing an IT infrastructure/ecosystem. It is 
performed by connectors that are specifically tailored for the peculiarities of the data sources. Connectors can 
be roughly classified based on two kind of communications they support: client/server (or request/response) and 
publish/subscribe. Client/Server is mostly related to a synchronous communication, whereas Publish/Subscribe 
refers to an asynchronous way of data shipping. 
The request/response mechanism is traditionally associated to the concept of Application Programmable 
Interface (API). API is an interface that defines how two software or services communicate. APIs hide the 
underlying implementation by providing the developer with a selected and well-defined set of 
functionalities.  There are two kinds of implementation usually followed to realize (Web 2.0) API: SOAP (i.e., 
Simple Object Access Protocol) and REST (i.e., Representational State Transfer). Some differences between 
these two ways of implementation are listed below:4 

• SOAP is a protocol, whereas REST is an architectural pattern. 
• SOAP uses service interfaces to expose its functionality to client applications, while REST uses 

Uniform Service Locators (URL) to access to the components. 
• SOAP needs more bandwidth for its usage, whereas REST does not need much bandwidth. 
• SOAP only works with XML formats, whereas REST works with plain text (e.g., XML, HTML, 

JSON). 
• SOAP cannot use of REST, whereas REST can use SOAP. 

Nowadays, REST (see Figure 18) is the most used approach to implement APIs. Another peculiarity of REST 
is that the application and functionality are divided into web resources [3].  

 
3 Part of the content of Chapter 3 has been presented in a paper titled “Dynamic and Scalable Enforcement of Access 
Control Policies for Big Data” accepted for publication at ACM MEDES 2021 [30]. 
4 https://www.guru99.com/comparison-between-web-services.html 
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Figure 18: REST paradigm in action. 

 
The publish/subscribe mechanism is increasingly applied due to its suitability in fully distributed architectures 
to decouple communications between independent components. It permits asynchronous communication 
supporting, in some cases, components (data producer and data consumer) having different velocity. This 
approach is often used in microservices-based architectures to create a communication bus. In this context the 
data that need to be transferred are (technically) called events, while their flow is called event-streaming. 
Publishers of events can be databases, sensors, mobile devices, cloud services and so on; practically, our data 
sources.  
Events are classified and durably stored in topics. A topic is similar to a bucket, and events are the items in that 
bucket. A topic can have zero or many producers (i.e., data sources) and zero to many consumers (i.e., 
applications, tools, or storage devices). Apache Kafka is the most largely used tool for publish/subscribe 
mechanism (see Section 2.2.1.2 for further architectural details) based on tags and capable to handle message 
persistency. 
 
 
3.1.2 Ingestion pipeline 
The ingestion pipeline is composed of a sequence of tasks starting from data extraction (using connectors in 
Section 3.1.1), data transformation (in most of the cases format transformation) and data storing (to store data 
on a specific medium/storage service). Figure 19 shows a fine-grained ingestion pipeline structure that extends 
the ingestion pipeline in  Figure 15. 

Figure 19: Fine-grained ingestion pipeline structure. 

  
The ingestion pipeline should consider the following aspects: 

• Data is extracted in its raw format and with producer speed. Incoming data are received in their 
respective raw format with no restrictions on data extension or size. Connectors handling tasks should 
be capable to deal with such format/size and also the velocity of the data producers.  For instance, if a 
buffering is needed to collect a set of data prior to transform them, such buffering should be implemented 
at connectors level. Similarly, if row data are provided with a specific protocol, such protocol should be 
interpreted prior to the transformation and just after the connectors by the data gathering tasks.    

• Data can require transformation or augmentation prior to be ingested. Since the data are received in raw 
format, some pre-processing is often necessary at this stage. Pre-processing is performed by means of 
data transformation tasks. Data transformation may involve changes of data format to match ingestion 
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storage capabilities and/or augmentations to enrich ingested data with contextual information of by 
merging different data sources.  

 

3.1.3 Ingestion storage 
According to their nature (i.e., structured, unstructured and semi-structured), data can be finally stored on ad-
hoc designed mediums (i.e., NoSql, RDBMS, HDFS, ecc,) in a persistent fashion. The storage procedure is 
triggered by the Data Storing tasks and concludes every ingestion pipelines. 
To store structured data a solution based on relational DBMS is adopted. As anticipated, the data before storage 
are pre-processed, hence transformed or augmented. In our engine, structured data are stored by means of 
Apache Hive (described in Section 2.2.1.3). This means that the Data Storing tasks handle procedures to connect 
to Hive and the final checks on the data format to guarantee absence of incompatibilities (e.g., data types) 
between the storing technologies, in this case Hive, and the data after transformation. 
As far as unstructured and semi-structured data are concerned (e.g., documents, folders, images and so on) our 
engine adopts HDFS. We recall that HDFS is a distributed, scalable, and portable file system that suites well in 
dealing with big data issues (see Section 2.2.1.1).  

3.2 Data annotation 
Data annotation extends the data transformation tasks (in Figure 19) of the ingestion pipeline adding annotation 
capabilities. More in detail, it extends the augmentation capabilities of data transformation tasks by adding 
additional meta information on the data. 
The term data annotation usually refers to the process of adding relevant and further information (called 
metadata) to a single/set of data. Data annotation or (meta)tagging are often used as interchangeable terms. A 
tag is a label consisting of a key and an optional value that is assigned to a resource. In cloud scenarios, tagging 
is widely used to perform more sophisticated filtering or reporting on resources.  
Data annotations have two main advantages:  

1. metadata tagging permits to identify, organize, and extract value out of the (possibly unstructured) raw 
data ingested. For example, it is possible to capture document semantics through tags.  

2. Tagging enables to categorize resources in different ways (e.g., by purpose, owner, environment, or 
other criteria), encompassing conventional database schema information. Moreover, relationships 
between attributes of different data sets can be indicated explicitly as tags, without the need of some 
sort of, possibly computational expensive, data normalization. 

When using a tagging solution, it is fundamental to devise and agree on a consistent set of tag keys, called 
vocabulary. However, the choice of the tags and how to apply them to resources depends on the specific use 
case or working environment. For example, tags can be used to express different data aspects: type (e.g., video, 
image, log, tuple, file), details on the content, origin/author (e.g., sensor or city), environmental context (e.g., 
public office, school, gathering place, street), purpose of usage (e.g., monitoring, surveillance, threat prevention, 
viability), operational requirements, or data sensitivity.  
Table 3: Tagging use cases. provides an example of possible vocabularies to be used in different use cases.  
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Table 3: Tagging use cases. 

Use case Description Tag Key and possible values 
Data classification User-defined sensitivity of data DataClassification: Public, 

Secret, Top Secret 

Protected health info Health data created, received, 
stored or transmitted by HIPAA-
covered entities (e.g., 
demographic data, medical 
histories, test results, insurance 
information) 

PHI 

Privacy classification Any information that permits the 
identity of an individual to be 
directly or indirectly inferred 

PrivacyClassification: PII-id, PII-
quasi-id, PII-Sensitive 

Disaster recovery Business criticality of the 
application, workload, or service 

DR: Mission-critical, Critical, 
Essential 

Business criticality Business impact of the resource Criticality: Low, Medium, High 

Environment Deployment environment of the 
workload or service 

Env: Prod, Dev, QA, Stage, Test 

Roles Roles of employees in a hospital Role: IT admin, Doctor, Nurse, 
Radiologist, Cardiologist, ... 

Owner name Owner of the workload or service Owner: mrossi@company.com 

Type Type of document Type:  JPG, PDF, TXT, XML, 
HTML, … 

Content Content of document Content: FacePic, EnvPic, ... 

Creation date Creation date of the resource CreationDate: 2023-10-15 
Source Origin of data SensorID: Camera123 

 
For instance, use case Privacy classification should be used every time data privacy must be protected, that is, 
every time personal data are involved. Data privacy generally means the ability of a person to determine when, 
how, and to what extent personal information can be shared with or communicated to others.  
According to the General Data Protection Regulation (GDPR),5 personal data are any information relating to an 
identified or identifiable natural person (called data subject). Based on this definition, and on the technological 
advances that have improved data collection and analytics, personal data (Personally Identifiable Information - 
PII) fall into three categories:  

(i) explicit identifiers, that is, any information that directly identifies individuals with certainty, such 
as national ID, assurance number, phone number, passport number;  

(ii) quasi-identifiers, a set of data attributes that could jointly or uniquely identify a subject when 
combined with publicly available data, such as ZIP code, date of birth, and address;  

(iii) sensitive information, data related to a person that do not permit direct identification. If linked to an 
individual, they reveal sensitive aspects of the individual private life. 

The tagging vocabulary for use case Privacy classification then consists of a tag key PrivacyClassification, with 
three possible values (PII-id, PII-quasi-id, PII-Sensitive), representing the three categories. 

 
5 https://gdpr-info.eu/ 
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3.3  Security and privacy-oriented data transformations 
Security and privacy-aware transformations are special types of ingestion pipeline’s transformation tasks that 
are focused on compliance to regulations and standards rather than simple format conversion. They need to have 
information about the semantics of the ingested data and this is normally provided via ad hoc design of pipeline 
(unfeasible in the dynamic context we are considering) or via data annotation (see Section 3.2). In the following, 
we present a taxonomy of security- and privacy-oriented transformations that are of interest in the context of 
our solution. 
A taxonomy of data transformations collects all functions used to sanitize the ingested data. Data transformations 
are categorised depending on the security property they aim to guarantee. 
Data transformations for confidentiality (or integrity). The conventional security mechanisms used to protect 
data are encryption or hashing. With the advent of multi-tenant distributed clouds and collaborative machine 
learning environments, ad hoc encryption schemes have been proposed, such as: 

• Attribute/based encryption (ABE) [4] [5]. It is a public-key encryption scheme where the key pair of 
a user and the ciphertext are dependent on a set of attributes. The decryption of a ciphertext is possible 
only if the set of attributes of the user wanting to decrypt the ciphertext matches the attributes of the 
ciphertext. 

• Identity/based encryption (IBE) [6]. It is an alternative to public key encryption, aiming to simplify 
key management in a certificate-based Public Key Infrastructure (PKI) by using human identities such 
as email or IP addresses as public keys. 

• Homomorphic encryption [7]. It is a form of encryption that permits performing computations on 
encrypted data without first decrypting it. The resulting computations are left in an encrypted form 
which, when decrypted, results in an identical output to the one obtained when performing computations 
on cleartext data.  

Data transformations for anonymity. Data anonymization is the general term used to describe the process of 
hiding identifiable information that may lead to personal identification, so that users described by such data 
remain anonymous. Main anonymization techniques are described as follows: 

• Suppression. It removes an entire part of data, for example by replacing original values with a symbol 
that represents a null character. In case of structured data, a column or an entire tuple can be removed, 
or substituted with a null character. For example, a licence plate number can be substituted by the 
###### sequence. Since it consists in removing all data, it affects the usability. 

• Generalization. It replaces the value with a less specific but semantically consistent value. 
Generalization is typically applied to structured data, however not all attributes are suitable for it. For 
example, numerical values can be easily generalized into a fixed range of values (e.g., age), whereas a 
user ID can hardly be generalized.  

• Masking and encryption. They change characters to different characters, making the value 
inconceivable. They are a general case of truncation and of pre-fix preserving. Masking and encryption 
techniques make data useless for analysis. In addition, they are computationally inefficient: in the first 
case, values must be checked before changing them; in the second case, encryption has a cost. 

• Distortion. It maps the value to a new/different value, obtained by using a hash function or a 
cryptographic primitive. Similarly to masking and encryption, distortion make data useless for analysis. 
Specific techniques (e.g., distance-preserving hashing) can preserve a given level of quality useful for 
analysis. 

• Swapping. It rearranges variables randomly within a specific column in a relational database. It 
maintains the overall distribution of values, reducing the precision of data and their analysis. It is 
computationally efficient. 

Data anonymization is frequently used to preserve privacy. In this case, it is important to identify which 
techniques should be applied to each PII identifier, quasi-identifier and sensitive data, since significant data 
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should be retained as much as possible for analysis, but not at the cost of data leakage. The k-anonymity method 
[8] uses a combination of generalization, masking and suppression over an original data set to achieve k-
anonymity, that is, to obtain an anonymized data set where each tuple is similar to at least other k-1 tuples on 
the potentially identifying attributes that have been anonymized. 
It is important to note that anonymization is meant to remove identifiable information forbidding later re-
identification of a person. By contrast, pseudonymization manipulates data making them not-identifying data; 
original data however can be later recovered using additional information. Our approach can support both 
anonymization and pseudonimization. 

3.4 Ingestion-time access control 
This section presents the details of our access control system working at ingestion time, its functionalities, and 
some implementations details. The idea is to dynamically augment the ingestion pipeline with security and 
privacy-oriented transformation tasks instrumented by policies and data annotations, and triggered by policy 
enforcement. 
In the following, we first describe the requirements for access control at ingestion time, we then describe in 
detail our access control policies. 

3.4.1 Access control requirements 
The big data scenario adds lots of complexity to data governance, especially from a data protection perspective. 
Data protection is a key requirement for ICT applications dealing with high volume of data from multiple data 
sources, structured and unstructured data, and a complex ICT infrastructure either on cloud or on premises 
owned by a coalition of different organizations (i.e., cities and operators). It is even more key in scenarios where 
most of the collected data include sensitive or personal information. Given the software and technological 
complexity of the big data ecosystems, implementing an access control system is not trivial.  
Historically, companies have been handling data protection by adopting access control policies. Unfortunately, 
access control models developed in the 2000s for Service-Oriented Architectures fail to adequately manage the 
creation, use and dissemination of big data. They can be both ineffective and inefficient when applied to today's 
dynamic coalitions, where: i) partners join without necessarily integrating their cloud-based or on-premises ICT 
infrastructures, ii) collaborative processes are carried out involving multi-party data collection and analytics, iii) 
there are continuous changes in the security space structure of temporary coalitions, with many parameters for 
access right decisions unknown at policy writing time. Although, given its ability to support highly flexible and 
dynamic forms of data protection to business-critical data, Attribute Based Access Control (ABAC) [9] is 
currently adopted in big data projects as a common underlying model, the dynamic and decentralized nature of 
big data asks for new solutions. Current solutions are neither general nor scalable, since they are either platform-
dependent or coarse-grained [10], and they often do not consider end-to-end security. Platform-specific 
approaches are designed for one system only (e.g., MongoDB, Hadoop), and leverage on native access control 
features of the protected platform. However, Hadoop’s access control presents limitations, such as the 
complexity of deployment and the consumption of resources. Some recent proposals, like Federated Access 
Control Reference Model (FACRM) [11] [12] [13] are specifically tailored to the Apache Hadoop stack. On the 
other hand, platform-independent approaches have the advantage of being more general than platform-specific 
solutions. However, available platforms either model resources to be accessed as monolithic files (e.g., 
Microsoft DAC) or lack scalability. In addition, existing database-oriented approaches mainly leverage on recent 
research efforts for defining a unifying query language for NoSQL datastores (e.g., JSONiq and SQL++) [14], 
and therefore only focus on a particular type of analytic pipelines. The work of Hu et al. [15] can be seen as a 
first step towards a generalized access control model for big data processing frameworks, adaptable to Hadoop 
environment. However, the paper discusses the issues only from a high-level architectural point of view, without 
discussing a tangible solution. 
A proper big data access control system must accomplish technical peculiarities of big data systems [16] [17], 
pointing to scenarios where huge amount of data are diverse, come at high rates and must be proven to be 
trustworthy, as clarified by the 5V storyline [18]. On top of this, big data systems are composed of an ecosystem 
of services, mainly from third parties, increasing the governance complexity under multiple perspectives. Rigid 



D4.1 Data analytics and ingestion-time access control initial report V1.00   2021-11-10 
 

 

The research leading to these results has received funding from Horizon 2020, the European Union's                              Page 36 of 80 
Framework Programme for Research and Innovation (H2020) under grant agreement n° 883286. 
 
 

control, even if possible, does not fit the need to fully exploit the big data processing capabilities, while loosely 
control is not acceptable in many application contexts. New access control requirements then emerge as follows:  
R1: Access to data must be evaluated before data analytics take place. 
R2: Authorization should be the primary focus. Authentication is assumed to be managed by a separate and 
integrated module to guarantee federations within big data ecosystem. 
R3: Access control enforcement must protect data during their entire life cycle. Access control policies must be 
enforced at each phase of the analytics process, guaranteeing that data are properly protected and shared only to 
authorized users and for authorized operations. 
R4: Access control policies must support the specification of context-based access conditions, that is, access 
rights might depend on the run-time characteristics of the big data system (e.g., in the smart city scenario, a 
traffic control system should implement some form of adaptive signalling to mitigate dangerous situations during 
emergencies such as a car accident). 
R5: Access control enforcement should support fine-grained access control, dealing with both structured and 
unstructured data. When structured data are considered, policies can refer to a single cell, a column, a tuple or 
an entire table of structured data. When unstructured data are considered, policies can specify the portion of the 
unstructured file whose access need to be regulated. 
R6: Access control enforcement should not use data ownership as the only attribute to define access rights, but 
rather being applied at ingestion time on the basis of the evolving state of resources and individuals within a 
specific big data context. 
R7: Access control should protect the privacy of sensitive data. 
R8: Access control enforcement should be driven by dynamic and contextual annotations on data. 
R9: Access control enforcement should be highly efficient and scalable to accomplish the increasing cardinality 
of data and rate of requests. 
 

3.4.2 Access control policies 
The novel ingestion procedure in Figure 19 is enriched with access control enforcement capabilities and 
performs data-model transformations of the ingested resources. The transformations depend on the state of the 
collaboration and the specific target where data are routed (separation of duties). Our approach makes policies 
verifiable and adaptable to the evolving state of resources and individuals within a specific big data context. We 
note that implementing access control at ingestion time can lead to data duplication in case a specific data source 
is ingested by two different actors or routed to different targets having different access control policies to comply 
with. However, in a big data context, such duplication can be considered negligible compared to the advantages 
obtained in terms of data governance and analytics performance. 
Our methodology builds on and extends the policy structure of traditional attributed-based access control 
systems, whose policies rules are expressed as a tuple of the form  

<subject, action, object, [context], [obligation], deny/allow> 

where an optional obligation specifies an action that must be performed before the policy is enforced and the 
context also includes the purpose of the access. Obligations are in most of the cases actions that are not directly 
associated with the controlled data. In collaborative big data scenarios, however, data are shared among large 
coalitions of different organizations or operation teams in a city, but it is still important to ensure that sensitive 
data are properly protected and only exposed to the level required for specific business needs. In this context, 
deny access to data is the very last decision to take. Deny means no analytics, and then no value. In this paper, 
we put forward the idea that in the big data context preemptive data transformations are more suitable that 
denying data access. Indeed, we propose a platform-independent methodology still based on the common 
eXtensible Access Control Markup Language (XACML) architecture, where policy rules are of the form  

<subject, action, object, context, data transformation> 
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where: 

• the subject is the actor or the service who makes a request to access a certain object. It can be 
expressed either as a unique identifier or as a role/group the subject belongs to; we note that in our 
case the subject can be a *** as the specific target where data are routed; 

• the action declares the operation (e.g., read, write, update, delete, select) on the object for which 
permission is requested; 

• the object defines the data, system component or service to be accessed; 
• the context is a set of attributes (independent of a particular subject, object or action) that are 

relevant to the authorization decision; 
• the data transformation is a type of obligation that sanitizes data resources to guarantee a 

minimum level of access to data.  
We note that, deny access to data can happen in extreme cases when data transformations delete all data 
resources. 
 

 
Figure 20: The ingestion-time access control methodology. 

Figure 20 shows the big data processing system in Figure 15 extended with our policy-aware ingestion pipeline 
that extends the ingestion pipeline with the ability to enforce access control policies and transforming data. The 
policy-aware ingestion pipeline builds on the following building blocks. 

1. Data annotation (Section 3.2) as the process where data sources are enriched with contextual 
information and metadata on data sensitivity/peculiarities. Such a process indicates to the ingestion 
pipeline the proper way of dealing with the data and drives data transformation.  

2. Taxonomy of data transformations (Section 3.3) as a library of transformations that can be executed on 
data resources. It includes pruning, reshaping, or encrypting/decrypting the different resource parts. We 
support both unstructured raw data and multiple data models, including popular service/big data models, 
such as encoded JPEG image files, CSV files, JSON, HDFS, and XML. Each entry in the taxonomy is 
mapped to a transformation function at ingestion layer. 

3. Policies expressing the need to enforce certain transformations based on attributes and actors executing 
the ingestion process. 

 
Figure 21 shows more details of how the access control system enriches the ingestion pipeline in Figure 19. 
Specifically, it shows that annotations can be applied to i) data sources specified in the Connectors handling 
tasks, ii) data prior and after transformation in the Data Transformation tasks, and iii) data while moved to 
storage with the Data Storing tasks. We note that the last annotation before the data storage is used either to 
support data extraction on the data lake for further ingestion procedures or data control prior to the analytics. It 
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also shows that security and privacy-oriented tasks take places prior to the storing tasks and that their definition 
and application are driven by taxonomies of transformations and policies. 
 

 
Figure 21: Details about ingestion pipeline structure. 

 
Examples of data annotations and transformations for privacy-preserving access control 
 
The data annotation process can be exploited to facilitate the design and implementation of security policies 
(e.g., multi-level or role-based policies), or to limit access to specific environments, users, applications (e.g., 
development, test, quality assurance or production). In case of unstructured data, tagging also helps in defining 
policies at different levels of granularity. 
Consider for example a traffic monitoring service regulating accesses to a Low Emission Zone in a smart city 
scenario. Data sources are made of videos of city traffic. At ingestion time, the ingestion pipeline enriches videos 
(unstructured data) with vehicles' information (structured data). Our data annotation refers both to data sources 
and to the data generated by the ingestion pipeline, with the aim to preserve users' privacy. More specifically, 
the tagging vocabulary we consider contains: 

• a set of tags to be associated to the snapshots metadata taken by the video camera to add information 
such as ViolationTime, indicating the time the picture was taken, CameraID to be used to retrieve the 
street controlled by the camera, Type=JPG and Content=PlateID specifying that the JPG file contains 
a picture with a given plate number; 

• the privacy classification tags introduced in Table 3, to be assigned both to the Content of the snapshot 
file and to the vehicles' information that includes owner's personal attributes (e.g., license plate number, 
owner and home address). 

Table 4 shows the privacy classification tags applied to the vehicles' information table. Since the table contains 
PII information, the columns of owner's personal attributes are labeled as PII-id or PII-quasi-id during 
the annotation phase and transformed by the ingestion pipeline to preserve privacy. The result is shown in Table 
5. 
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Table 4: Result of data annotation process on structured data. 

PII-ID  PII-SEMI-
ID 

    PII-SENSITIVE PII-ID PII-SENSITIVE 

plate_id owner_LN owner_FN owner_BD Address 
M-X2495 Brown Alice 1971-01-01 11, Grant 

Avenue 

B-AR667 Green Bob 1968-08-16 345, Market 
Street 

B-A7813 White Charlie 1950-03-03 2, Van Ness 
Avenue 

ALZ-1234 Black Trudy 2001-01-02 23, Alemany 
Boulevard 

 

Table 5: Vehicle’s owner data after the transformation (i.e., anonymization). 

plate_id owner_FN owner_BD address 

M-xxxxx Alice 1971-01-01 Grant Avenue 

B-xxxxx Bob 1968-01-01 Market Street 

B-xxxxx Charlie 1950-01-01 Van Ness 
Avenue 

ALZ-xxxxx Trudy 2001-01-01 Alemany 
Boulevard 

 
More in detail, different anonymization techniques have been applied to the different columns: 

• The first column records the plate number. In the example, we followed the German plates' format, 
where the first 1-3 letters are for the Region and City (e.g., M stands for Munich, B for Berlin and ALZ 
for Alzenau in Bavaria), then there are the state or city seals, followed by random letters or numbers. 
Plate ids have been only partially masked by substituting the free sequence of letters and numbers, to 
maintain the information of the possible origin of the vehicle. 

• The column with the last name of the owner has been suppressed for obvious reasons. On the contrary, 
in the example, we maintained the first name of the vehicle's owner (for possible gender statistics). 

• Generalization has been applied to the column with the birth date of the vehicle's owner, where only the 
year value corresponds to the original one. 

• The last column shows another example of generalization applied to the street address, where the street 
number has been removed. 
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3.5 Mapping on the data engine 
This section presents the implementation details and how the data ingestion process is technically integrated 
within our engine in Section 2. Specifically, we detail the data ingestion process from a technical standpoint by 
referring to those technologies and frameworks used in each specific step from the sourcing to the storage. We 
recall that all components and tools in our engine have been discussed in Chapter 2.  

Figure 22: Technologies and frameworks in data ingestion and access control. 

 
Figure 22 extends Figure 20 showing the link between our methodology and the technologies adopted in our big 
data engine (see Figure 2).  Note that a single technology can be used to support different entities in our 
methodology. For instance, Spark is used to support all computations carried out in the pipelines. 
In the following, we specify the different areas in Figure 22 and present how they are implemented in our engine.  

3.5.1 Area data collection  
As mentioned in Section 2.3.1, there are three modes to insert data produced by sources (e.g., sensor stations) 
or other providers (e.g., cities): batch, micro-batch and streaming. In the case of data ingested in batch form, the 
data collection process is executed by means of communication interface offered by the system (API in Figure 
22). Through these connectors, it is possible to technically input chunks of new data into the platform. Two are 
the possible ways to perform the data collection: active (i.e., by directly picking up data -- event-based) or 
passive (i.e., by a regular data receiving process -- time-based). The APIs hide the underlying implementation 
by offering to users only a selected and well-defined set of functionalities.  
In the case of data ingested in streams, a Kafka-based queue mechanism is used. Kafka queues are used to 
identify the different types of sources (e.g., devices, cities) and data types (e.g., images, tuples, logs, videos). 
Each producer sends data towards a specific "queue", that is, appropriately labelled to distinguish them from 
each other in terms of meaning, content, context, and so on.  
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3.5.2 Area data processing 
It includes all the pipelines from ingestion to visualization. In our engine the pipelines are written and executed 
by Spark or Spark stream (see Section 2.2.3) depending on the nature of the analysis to be carried out. Spark is 
capable to trace the execution of different jobs detailing the execution status. Figure 23 shows the Spark 
dashboard of our platform where the task “AnomalyDetection” was executed multiple times for testing purposes. 
It also details the structure of the cluster of Spark nodes. 

 
Figure 23: Spark tasks execution overview (dashboard). 

Pipelines are then orchestrated together using Airflow that is capable to schedule their execution. For instance, 
to meet Lambda architecture requirements, Airflow can schedule a batch model processing pipeline aimed to 
update the model when enough data are available on the data lake. It can also schedule execution of the 
continuous prediction pipeline and synchronise it with visualization pipeline. In our scenario, Airflow is also 
used to orchestrate single tasks in the pipeline when needed, for instance, in case of very complex analytics 
pipelines. Figure 24 shows Airflow dashboard with a DAG where ingestion, analytics and visualization pipelines 
are put in sequence mapping the architecture of Figure 22. 
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Figure 24:  Pipelines workflow (by airflow UI). 

3.5.3 Area data governance and control 
This area contains technologies to support policy-aware ingestion pipelines (see Sections 3.2, 3.3, 3.4). More 
specifically, we adopted Apache Ranger for the definition, assignment, and enforcement of access control 
policies and Apache Atlas for annotations instrumenting the policies.  
Figure 25 shows the Apache Ranger user interface to define an access control policy named “grant select user1 
on traffic”. In particular, from the “Policy Details” panel, we can see that such a policy targets all columns of 
table traffic in the database called traffic. In the lower panel, section “Allow conditions” specifies the 
permissions granted to the users as follows.  

• SmogAnalyst can perform only select operations. 
• LocPolDept can perform create, select, and update operations. 
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Figure 25: Definition of an Access policy. 

Apache Ranger can access to different security and privacy-oriented transformation tasks and trigger their 
execution.  
Figure 26 shows where it is possible to define the Apache Ranger transformation actions. Note that custom 
transformations can be defined and added to this list. 

 
Figure 26: Apache Ranger transformation actions. 

Practically speaking, Ranger is not capable to add a transformation task directly into the ingestion pipeline as 
needed, but it interacts with storage level technologies asking to execute the task prior to storing the outcomes 
of the ingestion pipeline. 
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We note that all data coming from the ingestion pipeline (both batch and stream modes) are managed by the 
mechanisms in the area Data Governance and Control but not all undergo data sanitization techniques (e.g. data 
masking, hashing).  
Apache Atlas is used to implement the annotation process by means of tags. Figure 27 shows the Atlas user 
interface suitable to define tags that are used during the data annotation phase. We note that Atlas internally uses 
Kafka to exchange messages using specific topics. 

 
Figure 27: Atlas tag definition. 

 
The tags are then used in the framework of Apache Ranger tag-based policies and Apache Atlas notifies the 
relevant components about tags when needed.  
Figure 28 shows a tag-based policy in Ranger using the tags defined in Figure 27. Atlas will also provide data 
lineage to improve the auditability of data flows. 
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Figure 28: Tag-based masking policy by using the tag defined in Figure 27 

 

3.5.4 Area data storage 
Once the data are treated by the “policy-aware ingestion pipeline” module, it can be stored in the storage 
components of the data lake (e.g., Hive or HDFS) and made available for the analytics and visualization 
pipelines. Technologies in area data storage are primarily focused on data availability, fault tolerance, and 
reliable distribution of data on the nodes of the cluster. They are indirectly involved in the processing procedure 
because nodes are normally involved in the processing of the local data, but when reduction is needed, prior to 
processing, the data should be redistributed or organized. This indiscernible relation between storage and 
processing is partially overcome by in memory processing of Spark, but still exists while workflows of different 
pipelines are considered. Figure 29 shows the Hive dashboard, where the schema of a structured data set 
(namely, traffic) is defined; Figure 30 shows the HDFS dashboard, where a folder is defined to contain 
unstructured data. 
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Figure 29: Hive data set schema. 

 
Figure 30: HDFS overview. 

 

3.6 Walkthrough scenario 
To see the full ingestion-time methodology at work, let us consider an extended version of the smart city scenario 
introduced in Section 3.4.2, where a Smog Analysis service is considered in addition to the Traffic Monitoring 
service regulating accesses to Low Emission Zones. Both services are based on the same data sources and 
ingestion pipeline. In the following, we first provide a description of the ingestion pipeline and then how our 
methodology applies to the two services. We also present some preliminary performance results. 
 

3.6.1 Ingestion pipeline and policies 
Services Smog Analysis and Traffic Monitoring share the same ingestion pipeline that includes video processing 
and data annotations already discussed in Sections 3.1 and 3.2. The outcome of this ingestion procedure is stored 
in the data lake of the city to be used by the two services independently. We note that, though the pipeline is the 
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same, it is executed by the two different services independently, thus providing the separation of duties 
characterizing our approach. Each service implements its own set of access control policies with different data 
transformations, leading to different enforcement results that are at the basis of our data governance approach. 
The service Traffic Monitoring monitors accesses to low emission zones and issues a fine when an unauthorized 
access is registered by a vehicle not belonging to the set of authorized license plates (e.g., ambulances, residents, 
public transport). The service implements a simple visualization pipeline loading data after ingestion and 
showing vehicles metadata. Metadata are obtained using the plate number extracted from the video within a 
relative set of snapshots, with the scope of showing them to the service user (i.e., a member of the local police 
department). For this service, we consider two scenarios as follows. 

• Normal scenario: authorized accesses are anonymized; unauthorized accesses are selected and the plate 
number is kept in clear to later issue a fine.  

• Emergency scenario: the restrictions put in place in the normal scenario must be relaxed. A different 
policy applies without the application of the anonymization transformation, allowing service users to 
get all the details of vehicles that entered the Low Emission Zones during emergency. We note that the 
data lake contains plain data just for the emergency period, when the emergency is over the ordinary 
policies are restored.  

In the following, we present the normal and emergency policies, respectively, as described by Apache Ranger 
with the form <subject, action, object, context, data transformation>: 

<LocPolDept, READ, Pii-id, {LEZ_Ordinary}, OK_PlateAnonym> 

<LocPolDept, READ, Pii-id, {LEZ_Emergency}, Ø> 

The service Smog Analysis combines information about air quality and traffic counting to create deeper insights 
about the connection between traffic regulation and air pollution. It uses the same ingestion pipeline, but the 
policy associated with the smog service is more restrictive in terms of privacy (e.g., video completely removed) 
and the transformation on the plate number is a replacement with the corresponding pollution class of the vehicle. 
In this case, the policy is of the form: 

<SmogAnalyst, READ, Pii-id, -, Plate2EmissionClass> 

 
Figure 31 shows the Apache Ranger Dashboard with the three defined policies. 

 
Figure 31: List of our policies in Apache Ranger. 

 

3.6.2 Enforcement  
Figure 32 shows the example with the two services in action and an excerpt of the ingested data. Both services 
can be implemented using an ad hoc end-to-end analytic approach; however, the level of data governance, as 
well as the flexibility provided, would not be comparable. With our solution, there is a common data governance 
based on an access control system, while in an ad hoc solution each service should be monitored for data 
governance compliance. In addition, a city-level data governance strategy can be applied to all the services or 
to the whole smart city ecosystem by simply changing or adding new policies, while in case of an ad hoc solution 
it requires to change every single service impacted by the new data governance strategy. 
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Figure 32: Data transformations for Traffic Monitoring and Smog Analysis services. 

 

3.6.3 Performance considerations 
We deployed the above system in our big data engine in Chapter 2 having one single node made of an Ubuntu 
20.04.2 LTS machine with Intel Xeon E5-2620 - 2.095GHZ CPU and 32 GB of RAM. To evaluate the 
performance impact of our methodology, we used the Mock Traffic data set 
(https://www.kaggle.com/mathfour/mock-traffic-data) and extended it generating other entries to reach 20,000 
records. We used the policies and services defined in this section and executed the ingestion procedure 
measuring the time needed to ingest data with and without policy enforcement. Figure 33 shows the performance 
results. We note that in the experiment without policies Atlas and Ranger were not fully disabled, therefore 
communication and notifications of incoming data between them were considered. The performance difference 
observed in Figure 33 represents just the policy enforcement time. The latter was not impacted by increasing the 
number of records due to the scaling capabilities of our architecture. We note that the enforcement time is 
reasonably negligible given the reduced set of policies and the limited effort requested by the transformations 
specified in the policies. 
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Figure 33: Comparing execution time with and without our policy enforcement. 
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4 Data Analytics 
This chapter presents an overview of the data analytics pipeline to be performed on data coming from the city 
pilots, that is, anomaly detection and event classification. 

4.1 Anomaly detection 
This section provides an overview of the anomaly detection pipeline.  
Anomaly detection is a machine learning task which refers to the problem of identifying data that do not conform 
to patterns observed in historical data. These patterns represent the expected behaviour in normal conditions. 
Therefore, anomaly detection is usually performed through a data-driven algorithm to construct a model which 
will be able to detect a specific measurement/object/instance/observation as anomalous with respect to the 
historical data already seen. Anomaly detection is a very general task that finds applications in many real-domain 
scenarios such as fraud detection for credit cards, insurance or health care, intrusion detection for cyber-security, 
fault detection in safety critical systems, and military surveillance for enemy activities [19]. 
Since the task is based on machine learning algorithms, it is possible to visualize what happens geometrically to 
the considered observations under analysis. Figure 34 illustrates from a geometrical point of view how the 
anomalies could be represented in a 2-dimensional data set. Specifically, there are two normal regions, 𝑁1 and 
𝑁2, since most observations lie in these regions. The points that are sufficiently far away from the regions, e.g., 
points 𝑜1 and 𝑜2, and points in region 𝑂3, are considered as anomalies. 
 

 
Figure 34: Anomalies in a 2-dimensional data set [19]. 
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Anomaly detection is usually performed by training a model (henceforth anomaly detector) that is capable of 
catching anomalies from data. We identified three possible phases to train an accurate anomaly detector: the i) 
initial phase, ii) update phase, and iii) identification phase.  
At the initial phase, a weak predictive model is constructed, that represents a “coin-flip” function with low 
predictive power, that needs to be trained to improve the performance. To this aim, at this phase, a batch-learning 
approach is considered to overcome the weakness of the starting function. The algorithm in this phase is at the 
"initial state".  
After the first stage, the anomaly detector performs better than the previous starting function and it could be 
ready to take the sensor data as input to identify possible anomalies. However, since the distributions could vary 
also in normal cases (e.g., during the weekend CO2 in the air could be lower than during working days), an 
additional update phase was introduced, that aims to enable further training of the anomaly detector with the 
possibility to catch also non-anomalous variations in distributions. Furthermore, the update phase helps also to 
use a previous pre-trained model with possible reduction of the training time. The algorithm in this phase is at 
the "update state".  
In the identification phase, the anomaly detector is ready to process sensor data to detect possible anomalies. At 
this phase, the anomaly detector could be placed in production to work actively with the real scenario data, since 
it shows better performance. The algorithm in this phase is at the "identification state". A general schema of the 
anomaly detection is shown in Figure 35. 
 

 
Figure 35: Anomaly detection for the identification of possible anomalies from sensor data. 

The anomaly detector can handle all the possible sensor data that presents spatial (e.g., GPS coordinates) and 
temporal information (e.g., timestamp) and a set of descriptive variables that are acquired by the specific sensor 
for the monitoring of the city. For instance, independently from the type of the sensor (e.g., traffic cameras, air 
pollution), the anomaly detector acts with the same approach. Indeed, the anomaly detector works with values 
usually indicating the level of something: pedestrians’ concentration, traffic level, temperature, humidity, level 
of PM2.5, level of CO2, and so forth, that are automatically captured and transmitted by the sensor network. 
Therefore, in the real scenario, the anomaly detector will analyse the data coming from different sensors and it 
will be able to judge the data as a normal or anomalous case. 
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4.1.1 Self-Organizing Map (SOM) 
Self-Organizing Maps (SOMs) [20] are a particular type of Artificial Neural Network (ANN) that are trained 
using an unsupervised learning, to produce a low-dimensional (generally a two-dimensional one) representation 
of the input space of a data collection, also referred to as a map. For this reason, Self-Organizing Map is also 
considered a dimensionality reduction method. As a result, SOMs make it easier to analyse and visualize high-
dimensional data. A peculiarity of SOMs is that the produced map allows to preserve the topological properties 
of the data, with the use of a neighbourhood function. What mainly distinguishes SOMs from ANNs is the fact 
that SOMs use competitive learning, as opposed to the error-correction learning, such as the backpropagation 
method. 
The typical structure of a SOM is shown in Figure 36. The input layer consists of a set of input vectors, i.e., the 
observations used to train the map. The feature map is composed of a grid of nodes (called neurons), with lateral 
connections. Grids used by a SOM are generally characterized by a low dimensionality, typically two or three 
dimensions. In the feature map, each input vector is connected to all neurons, while each neuron in the map is 
associated with a weight vector, having the same size as the input vectors. Consequently, the neuron can be 
considered an element belonging to the input space. However, while the input vectors are fixed points within 
the map space, the neurons, during the training phase, will tend to move closer to the input vectors, preserving 
the topology induced by the map space. 

 
Figure 36: A SOM architecture with its input space, connection weights, and feature map [21]. 

The training process of a SOM is very reminiscent of the information organization processes of the human brain, 
in particular in the cerebral cortex, in which different sensory information (e.g., visual and auditory) is handled 
in separate parts of the same. The following illustrates the process of training of a Self-organizing map. 
Let D be a data collection composed of n input vectors, defined as follows: 

𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑛} 
and let W be the set of the weight vectors, each of which is associated with a neuron in the feature map. 

𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑛} 
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Weight vectors are initially initialised at small random numbers. An input vector from 𝐷 is then acquired, and 
the Euclidean distance between the input vector and all the neurons is calculated, in order to find the most similar 
neuron to the input vector. This particular neuron is called the Best Matching Unit (BMU). Subsequently, the 
BMU and all its nearest neurons are brought closer to the input vector. The size and structure of the 
neighbourhood depend on the specific neighbourhood function used, denoted by 𝑁𝑓 . The procedure is repeated 
for each input vector belonging to 𝐷, for a determined number of iterations 𝑡. 
The equation for updating a neuron 𝑖, with a weight vector 𝑤𝑖, at time 𝑡 + 1, is given below. 

𝑤𝑖(𝑡 + 1) = 𝑤(𝑡) + 𝛼(𝑡) ∙ 𝑁𝑓(𝑡) ∙ (𝑑𝑘 − 𝑤(𝑡)) 

where 𝑁𝑓(𝑡) represent respectively the neighborhood function at time 𝑡, 𝛼(𝑡) is a scalar factor that defines the 
size of the correction, while 𝑑𝑘 is an input vector belonging to 𝐷. 
In the mapping phase, Euclidean distance between the new input vector and weight vectors is computed, in order 
to find the closest neuron, which could be used to classify the new data. 
 

4.1.2 Growing Hierarchical SOM (GH-SOM) 
In recent years, different variants of the SOM architecture have been proposed, one of the most popular is the 
Growing Hierarchical Self-Organizing Map (GH-SOM) [22]. This architecture overcomes some of the 
limitations of the SOM architecture. First, the SOM consists of a fixed feature map, where the number of neurons 
must be defined before the training phase. Second, hierarchical relationships between the input data are not 
clearly distinguishable in a SOM, within the map space. For these reasons, the structure of a GH-SOM 
dynamically grows into a hierarchy, according to the input data used during the training process. 
GH-SOM introduced a metric called Mean Quantization Error (MQE). The MQE of a neuron defines the 
deviation of the neuron with respect to the input data that chose it as a BMU. The MQE of a SOM can thus be 
defined as the average MQE of all the neurons in the feature map. 
During the training of a GH-SOM, the MQE of a neuron 𝑚0 at level-0 is computed (𝑚𝑞𝑒0), with respect to all 
the input vectors 𝑥(∙,𝑖), as defined below. 

𝑚𝑞𝑒0 =
1
𝑛 ∑ ‖𝑚0 − 𝑥(∙,𝑖)‖

𝑥(∙,𝑖)∈𝐶𝑛

 

where 𝐶𝑛  is the set of the input vectors.  
The first SOM is created at level-1 of the hierarchy, generally consisting of a 2 × 2 feature map. This first SOM 
is trained using the classical procedure for training a SOM. After the training, the MQE for the SOM (𝑀𝑄𝐸𝑚) 
is calculated. A high value for 𝑀𝑄𝐸𝑚 means that the map 𝑚 is not able to map the input space well and, for this 
reason, more neurons are required, in order to better approximate the input space. This condition is governed by 
the 𝜏1 criterion: 

𝑀𝑄𝐸𝑚 < 𝜏1 ∙ 𝑚𝑞𝑒𝑝 , with 0 ≤ 𝜏1 ≤ 1 

where 𝑚𝑞𝑒𝑝 defines the MQE of the parent neuron that wants to expand the map 𝑚. At this point, the map starts 
to grow, until the 𝜏1 criterion is satisfied. In order to grow, the neuron with the highest MQE is identified in the 
map, referred to as the error neuron 𝑒. After that, its most dissimilar connected neighbor is selected and a new 
column or a new row is inserted into the feature map, allowing new neurons to be added to the map. The new 
weights vectors are initialized with the average of the weight vectors of their adjacent neuron neighbours. 
Figure 37 shows the process of insertion of a new row or column in a SOM architecture. 
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Figure 37: Insertion of a new row (left) or a new column (right) in a SOM architecture [23]. 

This procedure produces an update SOM, that is trained and analyzed, according to the 𝜏1 criterion. The process 
of growth and training continue, until the 𝜏1 condition is satisfied. When the 𝜏1 condition is satisfied, neurons 
in the map are analyzed, according to the 𝜏2 criterion: 

𝑚𝑞𝑒𝑘 < 𝜏2 ∙ 𝑚𝑞𝑒0 , with 0 ≤ 𝜏2 ≤ 1 
Neurons that do not satisfy the 𝜏2 condition are expanded into new SOMs, to the next level of the hierarchy that 
is being generated. The new SOMs repeat the same process of training, growing and hierarchical expansion of 
the first SOM, previously defined at the level-1 of the hierarchy. When all the neurons in the lowest level of the 
hierarchy satisfy the 𝜏2 criterion, the training of a GH-SOM is completed. At the end, the GH-SOM takes on a 
hierarchical structure, consisting of multiple SOMs organized in different hierarchical levels, such that each 
SOM represents the input data at a finer granularity with respect to the parent SOM. 
The structure of a GH-SOM, at the end of the training process, is presented in Figure 38. 

 
Figure 38: Structure of a GH-SOM after the training process [23]. 
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4.1.3 Spark-GHSOM 
This section presents the tool used for the anomaly detection pipeline. 
The algorithm proposed in [23] is called Spark-GHSOM, that is able to overcome the classical GH-SOM issues. 
Specifically, GH-SOM requires multiple iterations over the input data set, making it intractable on large data 
sets. Furthermore, the conventional GH-SOM algorithm is capable of handling only numeric attributes. These 
limitations impact most of the modern real-world data sets that are characterized by mixed numerical and 
categorical attributes. Spark-GHSOM extends GH-SOM by exploiting the Spark platform to process massive 
data sets in a distributed manner. Moreover, Spark-GHSOM leverages the distance hierarchy approach to 
improve the optimization function of GH-SOM, in order to handle mixed-attribute data sets. Spark-GHSOM 
was tested with respect to accuracy, scalability and descriptive power and the results demonstrate the superior 
predictive and descriptive capabilities and applicability to large-scale data sets. In the project scope, in order to 
cope with the anomaly detection task, Spark-GHSOM has been extended, in order to perform anomaly detection 
that could be able to produce interpretable output easily readable also for the SOC operators and the end users. 
The first step in Spark-GHSOM is to replace the MQE function, used during the training of a GH-SOM, with a 
dissimilarity measure that is able to handle both numerical and categorical attributes. To this scope, variance 
was chosen to solve this issue: 

𝑣𝑎𝑟0 = ∑ (1𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙(𝑙) ∙ 𝑣𝑎𝑟(𝑙) + 1𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝑙) ∙
𝑢2(𝑙)

2 )
𝐿

𝑙=1

 

where 𝐿 is the total number of the input attributes, 1𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙(𝑙) is equal to 1 if the attribute 𝑙 is numerical, 0 
otherwise. The same applies for 1𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝑙), in the case of a categorical attribute 𝑙. 
The coefficient of unalikeability 𝑢2(𝑙), for a categorical attribute 𝑙, is defined as: 

𝑢2(𝑙) = ∑ 𝑝𝑖(1 − 𝑝𝑖)
𝑖 ∈ 𝑑𝑜𝑚𝑎𝑖𝑛(𝑙)

 

and 𝑝𝑖 is defined as follows: 

𝑝𝑖 =
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑙𝑖 , 𝐶𝑛)

𝑛  

where 𝑙𝑖 is the 𝑖-th value of the attribute 𝑙 and 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑙𝑖 , 𝐶𝑛) is the absolute frequency of 𝑙𝑖, for the attribute 
𝑙 in 𝐶𝑛, the set of all the 𝑛 input instances. 
The training process of the Spark-GHSOM follows the classical process of the GH-SOM described in the 
previous paragraph, except for the use of a different function for the calculation of the distance between the 
input vector and the neurons of the feature map, since the Euclidean distance is not computable on categorical 
attributes. For this reason, the hierarchical distance was chosen. 
The hierarchy obtained can thus be used to solve an anomaly detection task. In particular, when a new input 
vector is supplied to the hierarchy, the tool looks for the SOM that succeeds in better approximating the input 
data (that is, the SOM with the shortest distance with respect to the input vector). Once found, it is used to carry 
out the prediction for the new input data, based on the distance between the input vector and the neurons in the 
map. 
As data distributions tend to change over time, it may be necessary to update the knowledge of the anomaly 
detector using more recent data. For this reason, Spark-GHSOM for anomaly detection provides the possibility 
to update the weights vectors of the neurons while keeping the generated hierarchy unchanged. This process can 
be particularly useful if end users do not have enough time or data availability to train a new anomaly detector 
from scratch. Consequently, having a pre-trained model already available, it is possible to provide the model 
with a micro-batch of data, in order to update the knowledge extracted by the model and adapt it to the user's 
needs. 
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4.1.4 Interpretability 
This section provides a description of how the output of Spark-GHSOM has been made interpretable and its 
advantages. 
The anomaly detector could produce different types of output depending on the level of detail. The simplest 
approach provides feedback for the current data in the form of a Boolean response. This kind of output could 
support raising an alert if the response is equal to “anomaly” (see Figure 39 as an example). 
The described approach has the advantage that is simple to handle and transmits the prediction as a binary 
variable (e.g., anomaly/normal, 0/1, true/false). However, the drawback of this approach is that it makes difficult 
for the end user interpreting the raised alert/anomaly. Therefore, a more informative approach could be 
considered by combining the previous one with a ranking of the variables with their importance, indicating the 
contribution to catch the anomaly (see Figure 40). 
 

 
Figure 39: When an anomaly will be detected, the system will raise an alert indicating the timestamp and GPS 
coordinates. 

 

 
Figure 40: When an anomaly will be detected, the system will raise an alert and will provide a feature ranking 
according to the features importance in detecting the anomaly. 
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Feature ranking is a ranking of the entire features set, of which the data collection is composed, ordered with 
respect to the feature importance, each associated with a particular feature.  
Feature importance is a numerical value between 0 and 1, which expresses how anomalous the value expressed 
by the feature is with respect to the data collection, such that the sum of all the features importance in the feature 
ranking is equal to 1. 
The importance score is determined starting from a distance function between the current data under analysis 
and the anomaly detector model. The distance function is impacted by a predefined threshold (called threshold 
factor, that helps to control the sensibility of the algorithm). An anomaly will be detected if that distance is too 
high according to the previous data collection already seen for training. A graphical example is shown in Figure 
41. This approach helps to better understand if the set of current measurements represent an anomaly. In this 
way, the operator would be able to interpret if the current scenario is representing a threat. 
 

 
Figure 41: An example with two variables of analysis that correspond to two sensor measurements. 

 
Consequently, for each new instance to be classified, the tool will provide the following output: 

• Identification (i.e., norm al or anomalous case). 
• GPS coordinates of the sensors involved, if the observation is considered abnormal from the tool. 
• Feature ranking of the instance. 

 
An example of the output format from the anomaly detector, on atmospheric particulate data from the city of 
Oslo, is provided in Figure 42. 
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Figure 42: Output format of the anomaly detector. 
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4.1.5 Case studies 
This section presents two different case studies, using data coming from the pilot cities of Padua and Oslo, 
respectively. Each case study was conducted using the supervised and unsupervised anomaly detection 
approaches. In a supervised anomaly detection task, the anomaly detector is trained only on labelled data, using 
the normal cases, and is evaluated on unseen data. In an unsupervised anomaly detection task instead, data are 
not labelled. For this reason, the anomaly detector is trained making an important assumption, that most of the 
data in the training set are normal cases.  
That said, it is possible to infer that in the case of unlabelled data, it is necessary to use an unsupervised approach, 
while in the case of labelled data, both described approaches could be valid. However, even if having a greater 
flexibility, the main disadvantage of the unsupervised approach lies in the difficulty in performing a quantitative 
analysis, due to the lack of data labelling. 
 
Padua – Data set description 
The data extracted contain daily environmental information from the city of Padua, referring to the period that 
goes from 2014 to 2019, collected as batch. The data set consists of a sample per day, excluding those days 
when measurements were not present. Data were extracted from the ARPA Veneto website [24], Open Data 
section, where ARPA is an Italian regional agency that carries out environmental control activities, such as the 
analysis and measurement of air and water quality. 
The information extracted includes the following measurements: 

• Date of measurement (dd/mm/yyyy). 
• Air temperature at 2 metres (°C), respectively mean, min and max temperature. 
• Total precipitation on the day (mm). 
• Humidity at 2 metres (%), respectively min and max humidity. 
• Concentrations of allergenic pollen in the air (granules/m3) per family, for a total of 26 families. 

 
Figure 43Figure 43 shows the distribution of the meteorological information collected in the data set. 

 
Figure 43: Data distributions for the attributes mean, min and max temperature, precipitation, min and max 

humidity. 
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From the charts is clearly visible that the temperature attributes, as well as the min humidity, follow a normal 
distribution, while distributions of precipitation and max humidity are asymmetrical. 
 
Padua – Supervised Anomaly Detection 
The data set presented in the previous section is clearly unlabelled, as it is not possible to determine with 
certainty whether a given observation belonging to the data set is anomalous or not. For this reason, the focus 
was on determining whether a given attribute belonging to the data set had some anomalous values or not. The 
choice fell on the ambrosia pollen, which is a very common pollen and above all aggressive, as even small 
amounts can trigger strong allergic reactions. Furthermore, as shown in Figure 44, high ambrosia concentrations 
occurred only in rare cases in the period considered, so that the “high” class could be considered as the 
“anomaly” class and the remaining classes could be aggregated into the “normal” class. 
 

 
Figure 44: Ragweed pollen concentrations over the specified period, grouped into four concentration classes. 

Table 6 illustrates the results of the conducted experiment, where the 𝜏1 and 𝜏2 parameters were set to 0.7 and 
1.0, respectively. A description of the columns in the table is provided below: 
 
Input parameters 

• Epochs: number of passes of the entire training data set the algorithm has completed. 
• Threshold factor: parameter governing the distance within which an instance is considered an anomaly. 

Output parameters 

• True Normal (TN): number of correctly classified instances of class “normal”. 
• False Anomaly (FA):  number of instances of class “normal” that are classified as “anomaly”. 
• False Normal (FN): number of instances of class “anomaly” that are classified as “normal”. 
• True Anomaly (TA): number of correctly classified instances of class “anomaly”. 
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As can be guessed, the main objective of an anomaly detector is to minimise the number of False Normal and 
False Anomaly as well as maximise the number of True Normal and True Anomaly. Between False Normal 
and False Anomaly, we give higher priority to minimizing False Normal cases, which may represent the most 
dangerous situation.  

Table 6: Results of the Padua supervised anomaly detection experiment. 

epochs thresh. factor true normal false anomaly false normal true anomaly 
10 6.0 371 21 2 1 

10 5.5 369 23 1 2 

10 5.0 363 29 1 2 

10 4.5 355 37 0 3 

10 4.0 342 50 0 3 

10 3.5 322 70 0 3 

15 6.0 385 7 3 0 

15 5.5 384 8 1 2 

15 5.0 378 14 1 2 

15 4.5 374 18 0 3 

15 4.0 364 28 0 3 

15 3.5 352 40 0 3 

 
As Table 6 shows, many of the configurations adopted were able to correctly detect all the anomalies present 
within the test set. In particular, the best performing configuration uses 15 epochs and a threshold factor equal 
to 4.5. This configuration, as well as correctly identifying all the anomalies, allows the lowest number of false 
anomalies to be returned, equal to 18. 
From the experimental results, the following conclusions can be drawn: 

• The decrease in the threshold factor allows more anomalies to be correctly classified, however, as 
expected, the number of false anomalies (also known as “false alarms”) also increases. 
 

• Increasing the number of epochs reduces the number of false anomalies identified, thereby improving 
the overall performance. 
 
 

Padua – Unsupervised Anomaly Detection 
Unlike the previous experiment, in unsupervised anomaly detection is very complex to carry out a quantitative 
analysis. For this reason, in this experiment, it is preferable to use a qualitative approach, trying to draw some 
conclusions from the feature ranking returned by the tool. 
The first step is to find, for each feature, if possible, reference tables containing concentration classes. An 
example of a reference table for the precipitation attribute is provided in Table 7.  
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Table 7: Concentration classes for the precipitation attribute. 

rainfall intensity mm/6h mm/12h mm/24h 
weak 0 - 5 0 - 10 0 - 15 

moderate 5 - 15 10 - 30 15 - 45 
strong 15 - 30 30 - 60 45 - 90 

very strong > 30 > 60 > 90 
 
Each class in the reference table is associated with an “anomaly weight” in the range [0,1], where values 0 and 
1 are associated with the least and most dangerous classes, respectively. Table 8 shows the anomaly weights for 
the precipitation attribute, associated with each class in the reference table. 
 

Table 8: Anomaly weight for each concentration class of the precipitation attribute. 

rainfall intensity mm/6h mm/12h mm/24h 
weak 0.00 0.00 0.00 

moderate 0.33 0.33 0.33 
strong 0.66 0.66 0.66 

very strong 0.99 0.99 0.99 
 
Given 𝑘, the 𝑘-th position in the feature ranking, the anomaly quantifier at the 𝑘-th position is defined as follows: 
 

𝑎𝑛𝑜𝑚𝑎𝑙𝑦 𝑞𝑢𝑎𝑛𝑡𝑖𝑓𝑖𝑒𝑟@𝑘 = ∑ 𝑤𝑖

𝑘

𝑖=1

 

 
where 𝑤𝑖 is the anomaly weight of the attribute in the 𝑖-th position in the feature ranking, with 𝑖 ≤ 𝑘, if the 
reference table of the attribute in the 𝑖-th position is defined. Thus, using the anomaly quantifier, it is possible 
to identify instances containing more dangerous values than the remaining observations. 
By keeping track of the value assumed by the anomaly quantifier at each position k of the feature ranking, it is 
possible to graphically represent the trend of the anomaly quantifier. For instances identified as anomalous by 
the tool, we expect to see curves with a high slope in the first positions of the feature ranking that gradually 
stabilize, until they no longer grow. 
Figure 45 shows the trend of the anomaly quantifier, for each instance identified as anomalous by the tool. From 
a quantitative point of view, it is possible to calculate the area under the curve (AUC) for each curve in the 
graph, using the composite trapezoidal rule. The trapezoidal rule is a technique for approximating the definite 
integral of a function 𝑓(𝑥), by approximating the region under the graph of the function as a trapezoid and 
calculating its area. Figure 46 illustrates how the composite trapezoidal rule works. 
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Figure 45: Anomaly quantifier value for each position in the feature ranking, for instances identified as anomalous 

by the tool. 

 
Figure 46: Composite trapezoidal rule. 
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To follow the procedure described in the previous paragraph, it was first necessary to normalize the x-axis and 
y-axis in the interval [0,1], then the AUC of each curve was calculated by considering as points the values of 
the anomaly quantifier at each 𝑘-th position in the feature ranking. The AUC mean was 0.41, with a standard 
deviation of 0.13, respectively. The AUC mean, therefore, lies slightly below the AUC of the bisector of the 
first and third quadrants, which in the interval [0,1] is characterized by an AUC of 0.5. 
Let us consider the curve characterized by the highest AUC, which identifies the day on which more dangerous 
values occurred than on the remaining days, considering the descriptive features involved. The day identified is 
the 4 April 2014, as shown in Figure 47. 

 
Figure 47: Anomaly quantifier curve of 4 April 2014. 

The objective is to understand whether the feature ranking returned by the tool is consistent with the dangerous 
values recorded on that day. 
The top 10 feature ranking for the identified day is provided below, together with the anomaly weights: 

1. Urticaceae [1.00] 
2. Salix [0.67] 
3. Cupressaceae / Taxaceae [1.00] 
4. Fagaceae [1.00] 
5. Quercus [1.00] 
6. Pinaceae [0.67] 
7. Corylaceae [0.67] 
8. Platanaceae [1.00] 
9. Betulaceae [0.67] 
10. Fagus Sylvatica [0.33] 
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The features listed in the top positions of the feature ranking describe pollen families, which should not be 
surprising as high pollen concentrations mainly occur during the spring period. 
Figures Figure 48, Figure 49, Figure 50, Figure 51 show respectively the annual concentrations of pollens 
Urticaceae, Cupressaceae / Taxaceae, Corylaceae, and Betulaceae, relative to the year 2014. These graphs have 
been acquired from the ARPA report on allergenic fungal pollens and spores of the Veneto region [25]. 

 

 
Figure 48: Average daily pollen concentration of Urticaceae, year 2014 [25]. 

 
 
 

 
Figure 49: Average daily pollen concentration of Cupressaceae/Taxaceae, year 2014 [25]. 



D4.1 Data analytics and ingestion-time access control initial report V1.00   2021-11-10 
 

 

The research leading to these results has received funding from Horizon 2020, the European Union's                              Page 66 of 80 
Framework Programme for Research and Innovation (H2020) under grant agreement n° 883286. 
 
 

 
Figure 50: Average daily pollen concentration of Corylaceae - Corylus and Carpinus/Ostrya, year 2014 [25]. 

 
 

 
Figure 51: Average daily pollen concentration of Betulaceae - Alnus and Betula, year 2014 [25]. 

 
From the graphs listed, it is clearly visible that high concentrations of the described pollens occurred 
simultaneously on 4 April 2014. Furthermore, considering that the graphs are represented using different scales, 
the feature ranking associated with 4 April 2014 seems to be consistent with the trend assumed by the charts in 
that period. 
 

Oslo – Data set description 

The data extracted from the city of Oslo contain hourly air quality and public transports information, considering 
the time interval 16:00 – 17:00 on 14 September 2021, collected as batches. Each instance in the data set records 
information about the public transport route at a given time instant. Air quality monitoring data were collected 
using the API provided by the Norwegian Institute for Air Research (NILU) [26], while the public transport data 
were collected using the API provided by the public transport company ENTUR [27]. 
The information extracted from the two sources includes the following measurements: 
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• Date of measurement (yyyy-mm-dd hh:mm:ss). 
• Longitude coordinate of the vehicle (-180 to 180). 
• Latitude coordinate of the vehicle (-90 to 90). 
• Distance in meters between the previous stop (or current, if located at stop) and the next stop. 
• Name describing the origin of the departure. 
• Name describing the destination of the departure. 
• Boolean value describing whether the service is a headway transport service. 
• Boolean value describing whether the vehicle is affected by traffic congestions or other circumstances 

which may lead to further delays. 
The list of stations and pollutants collected from the city of Oslo is provided below: 

• Alnabru (NO, NO2, NOx, PM10, PM2.5 µg/m³). 
• Bryn Skole (NO, NO2, NOx, PM10, PM2.5 µg/m³). 
• Bygdøy Alle (NO, NO2, NOx, PM1, PM10, PM2.5 µg/m³). 
• E6 Alna senter (NO, NO2, NOx, PM10, PM2.5 µg/m³). 
• Hjortnes (NO, NO2, NOx, PM10, PM2.5 µg/m³). 
• Kirkeveien (CO mg/m³, NO, NO2, NOx, PM10, PM2.5 µg/m³). 
• Loallmenningen (NO, NO2, NOx, PM1, PM10, PM2.5 µg/m³). 
• Manglerud (NO, NO2, NOx, PM10, PM2.5 µg/m³). 
• Rv 4 - Aker sykehus (NO, NO2, NOx, PM10, PM2.5 µg/m³). 
• Skøyen (PM10, PM2.5 µg/m³). 
• Smestad (NO, NO2, NOx, PM10, PM2.5 µg/m³). 
• Sofienbergparken (NO, NO2, NOx, O3, PM10, PM2.5, SO2 µg/m³). 
• Spikersuppa (PM10, PM2.5 µg/m³). 
• Vahl skole (PM10, PM2.5 µg/m³). 

 
Consequently, in this experiment, it will be necessary to manage the presence of numerical and categorical 
attributes. However, as already illustrated in Section 4.1.3, this situation does not consist problem as Spark-
GHSOM can handle data sets consisting of mixed attributes. 
 
Oslo – Supervised Anomaly Detection 
As already described in the previous supervised experiment, an attribute must be identified to be used as the 
target variable, since the data set is not labelled. The choice fell on the attribute that denotes the presence or 
absence of traffic congestion, considering the lack of traffic as the normal situation and traffic congestion as the 
anomalous case. 
Table 9 illustrates the results of the conducted experiment, where the 𝜏1 and 𝜏2 parameters were set to 0.7 and 
1.0, respectively. A description of the columns in the table is provided below: 
Input parameters 

• Epochs: number of passes of the entire training data set the algorithm has completed. 
• Threshold factor: parameter governing the distance within which an instance is considered an anomaly. 

Output parameters 

• True Normal (TN): number of correctly classified instances of class “normal”. 
• False Anomaly (FA): number of instances of class “normal” that are classified as “anomaly”. 
• False Normal (FN): number of instances of class “anomaly” that are classified as “normal”. 
• True Anomaly (TA): number of correctly classified instances of class “anomaly”. 
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As can be guessed, the main objective of an anomaly detector is to minimise the number of False Normal and 
False Anomaly as well as maximise the number of True Normal and True Anomaly. Between False Normal and 
False Anomaly, we give higher priority to minimizing False Normal cases, which may represent the most 
dangerous situation.  

Table 9: Results of the Oslo supervised anomaly detection experiment. 

epochs thresh. factor true normal false anomaly false normal true anomaly 
10 6.0 192 4 1 0 

10 5.5 192 4 1 0 

10 5.0 192 4 1 0 

10 4.5 192 4 1 0 

10 4.0 192 4 1 0 

10 3.5 189 7 1 0 

15 6.0 192 4 1 0 

15 5.5 192 4 1 0 

15 5.0 192 4 1 0 

15 4.5 192 4 1 0 

15 4.0 192 4 1 0 

15 3.5 189 7 1 0 

 
As Table 9 shows, none of the configurations used were able to correctly classify the anomalous instance. 
Consequently, the descriptive attributes adopted may not be suitable for the prediction of road traffic anomalies. 
However, the anomaly detector was able to correctly classify most of the instances considered as normal 
situations, except for few cases where false anomalies were found by the tool. 
The following conclusions can be drawn from the experimental results: 

• Decreasing the threshold factor led to the discovery of more false anomalies, however did not increase 
the number of true anomalies. 

• Increasing the number of epochs did not change the experimental results. 
 
Oslo – Unsupervised Anomaly Detection 
Similar to the Padua unsupervised experiment, this experiment aims to carry out a quantitative analysis through 
an accurate evaluation of the feature ranking returned by the tool. 
In addition, from the experimental results, it could be interesting to understand whether the false anomalies 
identified in the previous experiment constitute a system error or whether they are true anomalies, but not related 
to road traffic congestion issues. For this reason, it was decided to reuse one of the configurations adopted in the 
previous experiment, namely the configuration with the number of epochs set at 10 and the threshold factor set 
at 4.0. 
The experimental results show that, again, the system identified a total of four potential anomalies. In particular, 
by consulting the feature rankings of these potential anomalies, it emerged that the first two positions are 
occupied by latitude and longitude attributes respectively, as at those particular time instants the geographical 
coordinates were not correctly recorded. In this scenario, therefore, the providential intervention of the tool could 
avoid potential threats to public safety. 
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In conclusion, it is possible to state that the anomalies identified by the system may constitute potential threats 
to public safety. Furthermore, by analyzing the feature ranking, it was possible to conclude that the potential 
anomalies identified in the previous supervised experiment, even if classified as false anomalies as they are not 
strictly related to traffic congestion, do constitute potential threats. 
 

4.2 Event classification 
This section provides an overview of the event classification pipeline. 
Starting from a predefined set of threats (e.g., fire, car accident, attack with guns), similarly to the anomaly 
detection task, the event classification task aims to classify the current unclassified sensor data under analysis 
as a particular threat or as a normal case. Therefore, in addition to the anomaly detector, the event classifier 
would be able to also indicate the type of the threat under analysis. For this task, similarly to the anomaly 
detection, a training phase and an event identification phase are foreseen. The main difference with the anomaly 
detection task is that usually the classification of an object/event is guided by the learning of a predictive model 
in a supervised manner. This means that the data set used for the training of the model must be annotated by 
describing the possible threats for the real scenario. However, this could be challenging to obtain. To overcome 
this problem, unsupervised algorithms could be also considered for the classification task as for the anomaly 
detection. These algorithms are usually less accurate than the supervised ones, since they exploit less informative 
data avoiding to consider predefined classes. 

4.2.1 Density-based clustering 
This section provides a description of clustering and density-based clustering. 
Clustering (also called Cluster analysis) is an unsupervised task in which objects in a data collection are grouped 
together into different groups, called clusters, according to the similar characteristics of the objects with respect 
to the remaining ones in the data collection. 
The most popular clustering algorithm is k-means, in which k cluster centroids are identified and the objects in 
the data collection are assigned to the near cluster centroid. A possible drawback of centroid-based clustering is 
that the algorithm is unable to handle outliers, since all the objects in the data collection are assigned to a specific 
cluster, even if they do not belong in any of them. As a consequence, in the anomaly detection, it may be difficult 
to identify possible anomalies using this method.  
In density-based clustering instead, “dense” clusters of points are identified, making possible to learn arbitrarily 
shaped clusters and thus identify outliers in the data collection. Figure 52 shows the clusters identified by the 
DBSCAN algorithm, a popular density-based clustering algorithm. The grey points were identified as outliers 
and, consequently, they were not associated with any cluster. 
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Figure 52: Density based clustering with DBSCAN [29]. 

4.2.2 DENCAST 
This section presents the tool used for the event classification. 
The method proposed in [28], called DENCAST, could be used for the event classification, since it is able to 
perform the unsupervised task of clustering also for the classification. It represents a novel distributed algorithm 
implemented in Apache Spark, which performs density-based clustering and exploits the identified clusters to 
solve both single-target and multi-target regression tasks (and thus, solves complex tasks such as time series 
prediction). Contrary to existing distributed methods, it does not require a final merging step (usually performed 
on a single machine) and is able to handle large-scale, high-dimensional data by taking advantage of Locality 
Sensitive Hashing (LSH).  
Given a data collection, consisting of n labelled objects, a distributed variant of LSH is applied, to approximate 
a neighbourhood graph. The obtained neighbourhood graph is composed of a node for each labelled object and 
undirected edges (represented as pair of nodes < 𝑢 , 𝑣 >) for those nodes that appear similar enough, according 
to the data representation obtained after the application of LSH and for a given threshold, called minPts. From 
this moment, the method will just make use of the neighbourhood graph, that can be considered an 
approximation of the objects in the data collection and their distances. At this point, the obtained clusters could 
be exploited to classify new data. The entire process is summarized in Figure 53. 
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Figure 53: Overview of the DENCAST architecture [28]. 
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5 Conclusions and next steps 
 
The deliverable presented both the theoretical and technological details of an innovative big data solution for 
the smart city domain, supporting analytics for anomaly detection and event classification, and posing particular 
attention to data management and protection. It proposed a solution where traditional data management 
components are enriched with an ingestion-based access control system that enforces access to data in a 
distributed, multi-party big data environment, before the execution of analytics pipelines. 
The proposed solution was deployed on an Apache-based big data engine extended with an ingestion-time access 
control approach to achieve full data governance on the ingested data driving analytics for anomaly detection 
and event classification. The entire data management and analytics functionalities have been tested 
independently in a simplified smart city scenario, showing the feasibility of the approach. 

5.1 Novelties and strengths of the proposed solution 
The peculiarities of big data systems (i.e., ecosystem of services, mainly from third parties, where huge amount 
of diverse data are collected at high rates and must be proven to be trustworthy) increase both the data 
management and the analytics complexity under multiple perspectives.  
With respect to the data protection and management problem, the methodology presented in this deliverable 
addresses the issues of access control models developed in the 2000s for Service-Oriented Architectures, which 
failed to adequately manage the creation, use and dissemination of big data. Existing models can be both 
ineffective and inefficient when applied to today’s dynamic coalitions, where collaborative processes are carried 
out involving multi-party data collection and analytics, and there are continuous changes in the security space 
structure of temporary coalitions, with many parameters for access right decisions unknown at policy writing 
time. The attribute-based access control methodology presented in this deliverable works at data ingestion time. 
In particular, the new ingestion procedure performs data-model transformations of the ingested resources that 
depend on the state of the collaboration and the specific target where data are routed (separation of duties). This 
approach makes policies verifiable and adaptable to the evolving state of resources and individuals within a 
specific big data context. It is based on an advanced ETL schema where i) data transformation is the result of a 
policy enforcement and ii) the target of the load phase of the data ingestion procedure is the data lake 
infrastructure. The scope of this advanced ETL is to enforce access control at ingestion time before any access 
request is received. Therefore, a city-level data governance strategy can be applied to all the services or to the 
whole smart city ecosystem by simply changing or adding new policies, while in case of an ad hoc solution it 
requires to change every single service impacted by the new data governance strategy. 
With respect to the data analytics problem, the methodology presented in this deliverable can handle large-scale 
and high dimensional data, without incurring computational bottlenecks as the algorithm proposed runs on 
multiple computational nodes, in a distributed fashion. Moreover, as most real-world datasets are characterized 
by numerical and categorical attributes, the proposed approach can handle mixed-attribute datasets, thus 
overcoming the limitations of those algorithms that can run on numerical datasets only. The knowledge acquired 
by the algorithm can be updated directly by the user, thus avoiding the instantiation of a new model, with a 
consequent gain in training time. Finally, the output of the tool has been made interpretable for the user by 
introducing a feature ranking, to better understand if the identified anomaly represents a threat or not. 

5.2 Future work 
In the final report due at M22, we plan to describe further improvements in the second year of the project, taking 
advantage of the close collaboration with some tasks and WPs. In particular: 

1. The acceptance pilots and live exercises planned and the process for validating IMPETUS platform 
described in D7.1 “Validation Plan” will be used to test the solution in this deliverable and to have 
a feedback from SoC operators. 

2. We will work towards a complete integration of the solutions to data management and data analytics 
in this deliverable, as well as within the whole IMPETUS platform according to the requests from 
city pilots. 
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3. The contributions of WP5 and especially of D5.2 “Initial mechanisms to preserve privacy in the 
secure smart city” will be used to refine privacy-enhancing technologies that could be adopted in 
the data transformation process at the basis of the ingestion-time access control solution in this 
deliverable. 

4. Additional algorithms based on the idea of predictive clustering will be proposed. 
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7 APPENDIX A: Mapping to requirements in D1.2 
 
The big data solution for the smart city domain presented in this deliverable has been designed according to the 
IMPETUS platform requirements in D1.2. Table 10 contains a subset of the requirements from D1.2 that are 
relevant for this deliverable and describes how our solution addresses them. 
 

Table 10: Mapping to requirements in D1.2. 

ID Requirement How it is addressed 

1 An Access Control methodology 
should handle access rights and data 
control. 

The proposed solution implements a data governance 
approach based on an access control methodology that 
works at ingestion time. The access control methodology 
supports data sanitization and transformations. They are 
applied prior to the storage of data in the data lake and the 
execution of big data analytics of the big data engine tool 
in WP4. 

3 The Access Control methodology 
should support sanitization policies 
that are enforced at ingestion time 
before an access to data is granted. 

The proposed solution supports sanitization and 
transformation of data prior to their storage in the data 
lake and their use by big data analytics of the big data 
engine tool in WP4. 

46 The change detector should raise an 
alert when sensor data do not follow 
an expected behavior, according to 
historical data for any variable under 
observation 

The proposed algorithm can train a model that catches 
anomalies in the data collected by the sensors, with 
respect to historical data. The identified anomalies are 
used to raise alerts for further investigation. 

47 The event classifier should raise an 
alert when sensor data represents a 
previously defined class of threat 

The proposed algorithm can train a predictive model that 
identifies specific threats from data. Unlike the anomaly 
detection task, this task needs further information on the 
predefined classes of threats encoded in data (at least for a 
subsample) to train the predictive model. 

58 The Access Control methodology and 
the ingestion process must use 
standard interfaces. 

The proposed solution is implemented within a traditional 
Apache-based big data engine. The ingestion process is 
built on either REST interfaces or Kafka queues, and can 
connect to different types data sources. 

60 The platform operators should 
manage Access Control policies. 

The proposed solution permits to customize access control 
policies using the Apache Ranger component, driving the 
behavior of the tool for large-scale data analytics in WP4. 

61 The ingestion process should support 
ingestion of structured and 
unstructured data. 

The proposed solution supports ingestion of both 
structured and unstructured data using an Apache-based 
big data engine. 

62 Data analytics should be executed on 
ingested data. 

The proposed access control-based data governance 
approach is applied prior to the storage of data in the data 
lake and their use by big data analytics of the big data 
engine tool in WP4. Access control enforcement and data 
sanitization/transformations are applied on ingested data, 
which are then fed into the data analytics algorithms. 
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63 The Ingestion process must support 
standard ingestion workflows on data 
measured and collected by the pilot 
cities. 

The proposed solution implements a generic approach that 
can support ingestion from different data sources including 
the ones of IMPETUS pilot cities. 

115 The IMPETUS project must develop 
approaches and methodologies for 
large-scale data analytics and 
visualization, as well as implement 
access control requirements to ensure 
the security of the data. 

The proposed solution supports large-scale data analytics 
for anomaly detection and event classification. The 
execution of the data analytics is mediated by the access 
control methodology at the basis of the data governance 
approach in WP4.  
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